Skip to main content
Log in

The structure and stoichiometry of anodic films on V, Nb, Ta, Mo and W

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Anodic films on Nb were found to have the expected amorphous structure for all formation voltages starting at 6 volts. Films on V, Ta, Mo, and W, on the other hand, were amorphous only when thick, with films below 9 to 30 nm (6 to 10 volts) showing a polycrystalline pattern by reflection electron diffraction. Although the patterns of the thin films were difficult to identify because of their poor quality, the following assignments are proposed: not V2O5, TaO z plus δ — Ta — O, MoO2 · H2O, WO2. To get information on the stoichiometry of thick anodic films on V, Mo, and W, specimens were crystallized by heating them at 300 to 500° C in air, but it was shown that the resulting observation of V2O5, MoO3, and WO3 has no relevance, as oxidation is both thermodynamically and kinetically possible. Vacuum crystallization was shown to be quite unsatisfactory with V and Mo, though is possibly acceptable with W; the information obtained from a comparison of film weights with metal-removal weights, namely that the stoichiometries were close to V2O5, MoO3, and WO3, is more relevant. The stoichiometries TaO z , MoO2 · H2O, and WO2 in the thin films are thermodynamically understandable. A greater problem arises in explaining the state of crystallinity of these as well as other anodic films. A parallel is proposed between anodic and ion-bombarded oxides, for in both cases the state of crystallinity tends to be the same and, furthermore, correlates with the ratio (crystallization temperature)/(melting temperature). A model based on crystallization due to energy deposition is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. T. Thomas, J. Electrochem. Soc. 117 (1970) 396.

    Google Scholar 

  2. E. Giani and R. Kelly, ibid 121 (1974) 394.

    Google Scholar 

  3. S. M. El Raghy (University of Cairo), personal communication (1975).

  4. P. H. G. Draper and J. Harvey, Acta Met. 11 (1963) 873.

    Google Scholar 

  5. D. G. Brandon, J. Zahavi, A. Aladjem, and J. Yahalom, J. Vac. Sci. Technol. 6 (1969) 783.

    Google Scholar 

  6. S. Zwerdeing and S. Sheef, J. Electrochem. Soc. 107 (1960) 338.

    Google Scholar 

  7. M. R. Arora and R. Kelly, ibid 119 (1972) 270.

    Google Scholar 

  8. M. A. Wilkins, Harwell (U.K.) Report AERE-R 5875 (1968).

  9. M. R. Arora and R. Kelly, J. Electrochem. Soc. 120 (1973) 128.

    Google Scholar 

  10. R. A. Harrington and H. R. Nelson, AIMME Inst. Metals 137 (1940) 62.

    Google Scholar 

  11. J. Yahalom and J. Zahavi, Electrochim. Acta 15 (1970) 1429.

    Google Scholar 

  12. M. T. Shehata and R. Kelly, J. Electrochem. Soc. 122 (1975) 1359.

    Google Scholar 

  13. D. M. Lakhiani and L. L. Shreir, Nature 188 (1960) 49.

    Google Scholar 

  14. D. A. Vermilyea, J. Electrochem. Soc. 102 (1955) 207.

    Google Scholar 

  15. O. Flint, J. J. Polling and A. Charlesby, Acta Met. 2 (1954) 696.

    Google Scholar 

  16. K. E. Gray, Appl. Phys. Lett. 27 (1975) 462.

    Google Scholar 

  17. D. K. Murti and R. Kelly, Surface Sci. 47 (1975) 282.

    Google Scholar 

  18. R. G. Keil and R. E. Salomon, J. Electrochem. Soc. 115 (1968) 628.

    Google Scholar 

  19. J. Pelleg, J. Less-Common Metals 35 (1974) 299.

    Google Scholar 

  20. S. Ikonopisov, Electrodeposition and Surface Treatment 1 (1972/73) 305.

    Google Scholar 

  21. M. McCargo, J. A. Davies and F. Brown, Can. J. Phys. 41 (1963) 1231.

    Google Scholar 

  22. M. R. Arora and R. Kelly, Electrochim. Acta 19 (1974) 413.

    Google Scholar 

  23. P. H. G. Draper, Acta Met. 11 (1963) 1061.

    Google Scholar 

  24. G. Amsel, C. Cherki, G. Feuillade and J. P. Nadai, J. Phys. Chem. Sol. 30 (1969) 2117.

    Google Scholar 

  25. C. J. Good, M.Sc. Thesis (McMaster University, 1976).

  26. N. Terao, Jap. J. Appl. Phys. 6 (1967) 21.

    Google Scholar 

  27. L. D. Calvert and P. H. G. Draper, Can. J. Chem. 40 (1962) 1943.

    Google Scholar 

  28. R. F. Janinck and D. H. Whitmore, J. Chem. Phys. 37 (1962) 2750.

    Google Scholar 

  29. J. A. Roberson and R. A. Rapp, J. Phys. Chem. Sol. 30 (1969) 1119.

    Google Scholar 

  30. D. R. Kudrak and M. J. Sienko, Inorg. Chem. 6 (1967) 880.

    Google Scholar 

  31. T. N. Kennedy, R. Hakim and J. D. Mackenzie, Mat. Res. Bull. 2 (1967) 193.

    Google Scholar 

  32. S. Kachi, T. Takada and K. Kosuge, J. Phys. Soc. Japan 18 (1963) 1839.

    Google Scholar 

  33. S. K. Deb and J. A. Chopoorian, J. Appl. Phys. 37 (1966) 4818.

    Google Scholar 

  34. J. Rudolph, Techn.-Wissenschaft. Abhandlungen der Osram-Gesellschaft 8 (1963) 86.

    Google Scholar 

  35. L. Kihlborg, Acta Chem. Scand. 13 (1959) 954.

    Google Scholar 

  36. J. M. Berak and M. J. Sienko, J. Sol. State Chem. 2 (1970) 109.

    Google Scholar 

  37. M. R. Arora, Ph.D. Thesis (McMaster University, 1974).

  38. T. Sata and Y. Ito, Bull. Tokyo Inst. Technol. 98 (1970) 1.

    Google Scholar 

  39. H. M. Naguib, unpublished results at McMaster University (1971).

  40. J. Nováková and P. Jírü, Coll. Czech. Chem. Comm. 29 (1964) 1114.

    Google Scholar 

  41. S. Dushman and J. M. Lafferty, “Scientific Foundations of Vacuum Technique” (Wiley, New York, 1962) p. 14.

    Google Scholar 

  42. A. M. Horgan and D. A. King, Surface Sci. 23 (1970) 259.

    Google Scholar 

  43. J. W. Hickman and E. A. Gulbransen, AIMME Tech. Pub. No. 2144 (1947).

  44. M. R. Arora and R. Kelly, J. Electrochem. Soc. (in press).

  45. E. A. Gulbransen and K. F. Andrew, ibid 97 (1950) 396.

    Google Scholar 

  46. F. J. Szalkowski and G. A. Somorjai, J. Chem. Phys. 56 (1972) 6097.

    Google Scholar 

  47. C. R. Brundle, Surface Sci. 52 (1975) 426.

    Google Scholar 

  48. D. K. Murti, E. Giani, M. R. Arora and R. Kelly (in preparation).

  49. See also Fig. 5 of R. Kelly and N. Q. Lam, Rad. Effects 19 (1973) 39.

    Google Scholar 

  50. W. D. Mackintosh and H. H. Plattner, J. Electrochem. Soc. 123 (1976) 523.

    Google Scholar 

  51. G. Brauer, H. Müller and G. Kühner, J. Less-Common Metals 4 (1962) 533.

    Google Scholar 

  52. C. Sella, L. Tertian and J. Deschamps, Rev. Phys. Appliq. 5 (1970) 415.

    Google Scholar 

  53. G. C. Wood and C. Pearson, Nature 208 (1965) 547.

    Google Scholar 

  54. M. G. Inghram, W. A. Chupka and J. Berkowitz, J. Chem. Phys. 27 (1957) 569.

    Google Scholar 

  55. I. H. Wilson, K. H. Goh and K. G. Stephens, Thin Solid Films 33 (1976) 205.

    Google Scholar 

  56. N. Norman, J. Less-Common Metals 4 (1962) 52.

    Google Scholar 

  57. S. Steeb and J. Renner, ibid 9 (165) 181.

  58. J. Niebuhr, ibid 10 (1966) 312.

    Google Scholar 

  59. H. Kihara-Morishita and T. Takamura, Thin Solid Films 6 (1970) R 29.

    Google Scholar 

  60. P. T. Sarjeant and R. Roy, J. Amer. Ceram. Soc. 50 (1967) 500.

    Google Scholar 

  61. C. M. Daly and R. G. Keil, J. Electrochem. Soc. 122 (1975) 350.

    Google Scholar 

  62. H. M. Kennett and A. E. Lee, Surface Sci. 48 (1975) 633.

    Google Scholar 

  63. J. Bousquet and G. Pérachon, C. R. Acad. Sci. (Paris) 258 (1964) 3869.

    Google Scholar 

  64. J. Bousquet and G. Pérachon, ibid 258 (1964) 934.

    Google Scholar 

  65. R. E. Pawel and T. S. Lundy, J. Electrochem. Soc. 115 (1968) 233.

    Google Scholar 

  66. H. M. Naguib and R. Kelly, Rad. Effects 25 (1975) 1.

    Google Scholar 

  67. R. A. Mickelsen and W. D. Kingery, J. Appl. Phys. 37 (1966) 3541.

    Google Scholar 

  68. M. T. Shehata and R. Kelly, to be published.

  69. J. Kavanagh and R. Kelly, work in progress.

  70. S. Ikonopisov, L. Andreeva and Ts. Nikolov, J. Electrochem. Soc. 120 (1973) 717.

    Google Scholar 

  71. D. K. Murti, R. Kelly, Z. L. Liau and J. M. Poate, to be published.

  72. R. Kelly and H. M. Naguib, “Proceedings of the International Conference on Atomic Collision Phenomena in Solids” (North-Holland, Amsterdam, 1970) p. 172.

    Google Scholar 

  73. T. Parker and R. Kelly, “Proceedings of the 3rd International Conference on Ion Implantation in Semiconductors and Other Materials” (Plenum, New York, 1973) p. 551.

    Google Scholar 

  74. R. Kelly, Rad. Effects, (in press).

  75. D. B. Rogers, R. D. Shannon, A. W. Sleight and J. L. Gillson, Inorg. Chem. 8 (1969) 841.

    Google Scholar 

  76. H. M. Naguib and R. Kelly, J. Phys. Chem. Sol. 33 (1972) 1751.

    Google Scholar 

  77. A. A. Fotiev and V. L. Volkov, Russ. J. Phys. Chem. 45 (1971) 1516.

    Google Scholar 

  78. D. R. Stull and H. Prophet, “JANAF Thermochemical Tables”, 2nd edition (U.S. Govt. Printing Office, Washington, 1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arora, M.R., Kelly, R. The structure and stoichiometry of anodic films on V, Nb, Ta, Mo and W. J Mater Sci 12, 1673–1684 (1977). https://doi.org/10.1007/BF00542819

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00542819

Keywords

Navigation