Journal of Solid State Electrochemistry

, Volume 15, Issue 11–12, pp 2523–2544 | Cite as

Composition depth profile analysis of electrodeposited alloys and metal multilayers: the reverse approach

  • Katalin Neuróhr
  • Attila Csik
  • Kálmán Vad
  • András Bartók
  • György Molnár
  • László Péter
Review

Abstract

The reverse depth profile analysis is a recently developed method for the study of a deposit composition profile in the near-substrate zone. The sample preparation technique enables one to separate the deposit and a thin cover layer from its substrate, and the initial roughness of the sample is much smaller than in the conventional sputtering direction. This technique is particularly suitable to study the zones being formed in the early phase of the electrodeposition of alloys. It has been demonstrated with the reverse depth profile analysis that in many cases when one component of an alloy is preferentially deposited, an initial zone is formed that is rich in the preferentially deposited component. This phenomenon is demonstrated for Ni–Cd, Ni–Sn, Fe–Co–Ni, Co–Ni, and Co–Ni–Cu alloys. The composition change is confined to the initial 150-nm-thick deposit, and it is the result of the interplay of the deposition preference and the depletion of the electrolyte near the cathode with respect to the ion reduced preferentially. The reverse depth profile analysis made it possible to compare the measured and the calculated composition depth profile of electrodeposited multilayers. It has been shown that the decay in the composition oscillation intensity in Co/Cu multilayers with the increase of the sputtering depth can be derived from the roughness measured as a function of the deposit thickness.

Keywords

Electrodeposition Depth profile analysis Alloy formation Multilayers 

References

  1. 1.
    Hightower A, Koel B, Felter T (2009) Electrochim Acta 54:1777–1783CrossRefGoogle Scholar
  2. 2.
    Palacio C, Ocón P, Herrasti P, Díaz D, Arranz A (2003) J Electroanal Chem 545:53–58CrossRefGoogle Scholar
  3. 3.
    Kossoy E, Khoptiar Y, Cytermann C, Shemesh G, Katz H, Sheinkopf H, Cohen I, Eliaz N (2008) Corros Sci 50:1481–1491CrossRefGoogle Scholar
  4. 4.
    Stangl M, Acker J, Oswald S, Uhlemann M, Gemming T, Baunack S, Wetzig K (2007) Microel Eng 84:54–59CrossRefGoogle Scholar
  5. 5.
    Favry E, Frederich N, Meunier A, Omnes L, Jomard F, Etcheberry A (2008) Electrochim Acta 53:7004–7011CrossRefGoogle Scholar
  6. 6.
    Martín AJ, Chaparro AM, Gallardo B, Folgado MA, Daza L (2009) J Power Sources 192:14–20CrossRefGoogle Scholar
  7. 7.
    Bardi U, Caporali S, Chenakin SP, Lavacchi A, Miorin E, Pagura C, Tolstogouzov A (2006) Surf Coat Technol 200:2870–2874CrossRefGoogle Scholar
  8. 8.
    Nakanishi S, Sakai S, Nagai T, Nakato Y (2005) J Phys Chem B 109:1750–1755CrossRefGoogle Scholar
  9. 9.
    Padhi D, Gandikota S, Nguyen HB, McGuirk C, Ramanathan S, Yahalom J, Dixit G (2003) Electrochim Acta 48:935–943CrossRefGoogle Scholar
  10. 10.
    Gómez E, Pllicier E, Vallés E (2003) J Appl Electrochem 33:245–252CrossRefGoogle Scholar
  11. 11.
    Dulal SMSI, Yun HJ, Shin CB, Kim CK (2009) Appl Surf Sci 255:5795–5801CrossRefGoogle Scholar
  12. 12.
    Koo HC, Cho SK, Kwon OJ, Suh MW, Im Y, Kim JJ (2009) J Electrochem Soc 156:D236–D241CrossRefGoogle Scholar
  13. 13.
    Pisarek M, Janik-Czachor M, Donten M (2008) Surf Coat Technol 202:1980–1984CrossRefGoogle Scholar
  14. 14.
    Sakai S, Nakanishi S, Nakato Y (2006) J Phys Chem B 110:11944–11949CrossRefGoogle Scholar
  15. 15.
    Shimizu K, Brown GM, Habazaki H, Kobayashi K, Skeldon P, Thompson GE, Wood GC (2001) Corros Sci 43:199–205CrossRefGoogle Scholar
  16. 16.
    Egberts P, Brodersen P, Hibbard GD (2006) Mat Sci Eng A 441:336–341CrossRefGoogle Scholar
  17. 17.
    Ahadian MM, Irajizad A, Nouri E, Ranjbar M, Dolati A (2007) J Alloy Comp 443:81–86CrossRefGoogle Scholar
  18. 18.
    Ranjbar M, Ahadian MM, Irajizad A, Dolati A (2006) Mat Sci Eng B 127:17–21CrossRefGoogle Scholar
  19. 19.
    Angeli J, Kaltenbrunner T, Androsch (1991) Fresenius J Anal Chem 341:140–144CrossRefGoogle Scholar
  20. 20.
    Csik A, Vad K, Tóth-Kádár E, Péter (2009) Electrochem Commun 11:1289–1291CrossRefGoogle Scholar
  21. 21.
    Péter L, Csik A, Vad K, Tóth-Kádár E, Pekker Á, Molnár G (2010) Electrochim Acta 55:4734–4741CrossRefGoogle Scholar
  22. 22.
    Iselt D, Gaitzsch U, Oswald S, Fähler S, Schultz L, Schlörb H (2011) Electrochim Acta 56:5178–5183Google Scholar
  23. 23.
    Leistner K, Thomas J, Baunack S, Schlörb H, Schultz L, Fähler S (2005) J Magn Magn Mater 290–291:1270–1273CrossRefGoogle Scholar
  24. 24.
    Lukaszewski M, Klimek K, Czerwinski A (2009) J Electroanal Chem 637:13–20CrossRefGoogle Scholar
  25. 25.
    Papadimitriou S, Armyanov S, Valova E, Hubin A, Steenhaut O, Pavlidou E, Kokkinidis G, Sotiropoulos S (2010) J Phys Chem C 114:5217–5223CrossRefGoogle Scholar
  26. 26.
    Gupta D, Nayak AC, Sharma M, Singh RR, Kulkarni SK, Pandey RK (2006) Thin Solid Films 513:187–192CrossRefGoogle Scholar
  27. 27.
    Péter L, Katona GL, Berényi Z, Vad K, Langer GA, Tóth-Kádár E, Pádár J, Pogány L, Bakonyi I (2007) Electrochim Acta 53:837–845CrossRefGoogle Scholar
  28. 28.
    Katona GL, Berényi Z, Péter L, Vad K (2008) Vacuum 82:270–273CrossRefGoogle Scholar
  29. 29.
    Bartók A, Csik A, Vad K, Molnár G, Tóth-Kádár E, Péter L (2009) J Electrochem Soc 156:D253–D260CrossRefGoogle Scholar
  30. 30.
    Csik A, Vad K, Langer GA, Katona GL, Tóth-Kádár E, Péter L (2010) Vacuum 84:141–143CrossRefGoogle Scholar
  31. 31.
    Hernández-Vélez M, Pirota KL, Pászti F, Navas D, Climent A, Vázquez M (2005) Appl Phys A 80:1701–1706CrossRefGoogle Scholar
  32. 32.
    Vázquez M, Hernández-Vélez M, Pirota K, Asenjo A, Navas D, Velázquez J, Vargas P, Ramos C (2004) Eur Phys J B 40:489–497CrossRefGoogle Scholar
  33. 33.
    Singh S, Basu S, Ghosh SK (2009) Appl Surf Sci 255:5910–5916CrossRefGoogle Scholar
  34. 34.
    Takahashi M, Kojima M, Sato S, Ohnisi N, Nishiwaki A, Wakita K, Miyuki T, Ikeda S, Muramatsu Y (2004) J Appl Phys 96:5582–5587CrossRefGoogle Scholar
  35. 35.
    Kang SH, Kim YK, Choi DS, Sung YE (2006) Electrochim Acta 51:4433–4438CrossRefGoogle Scholar
  36. 36.
    Calixto ME, Sebastian PJ (2000) Solar Energy Materials & Solar Cells 63:335–345CrossRefGoogle Scholar
  37. 37.
    Nauer M, Ernst K, Kautek W, Neumann-Spallart M (2005) Thin Solid Films 489:86–93CrossRefGoogle Scholar
  38. 38.
    Rogers KD, Wood DA, Painter JD, Lane DW, Ozsan ME (2000) Thin Solid Films 361–362:234–238CrossRefGoogle Scholar
  39. 39.
    Seipel B, Nadarajah A, Wutzke B, Könenkamp R (2009) Mater Lett 63:736–738CrossRefGoogle Scholar
  40. 40.
    Lu M, Cheng H, Yang Y (2008) Electrochim Acta 53:3539–3546CrossRefGoogle Scholar
  41. 41.
    Cheng H, Zhu C, Lu M, Yang Y (2007) J Power Sources 173:531–537CrossRefGoogle Scholar
  42. 42.
    Saito Y, Rahman MK (2007) J Power Sources 174:877–882CrossRefGoogle Scholar
  43. 43.
    Kowalski D, Aoki Y, Habazaki H (2009) Angew Chem Int Ed 48:7582–7585, Supporting informationCrossRefGoogle Scholar
  44. 44.
    Shimizu K, Habazaki H, Skeldon P, Thompson GE, Wood GC (2000) Electrochim Acta 45:1805–1809CrossRefGoogle Scholar
  45. 45.
    Benzakour J, Derja A (1997) J Electroanal Chem 437:119–124CrossRefGoogle Scholar
  46. 46.
    Crossland AC, Thompson GE, Smith CJE, Habazaki H, Shimizu K, Skeldon P (1999) Corros Sci 41:2053–2069CrossRefGoogle Scholar
  47. 47.
    Wener Z, Jaskiewicz A, Pisarek M, Janik-Czachor M, Barlak M (2005) Z Phys Chem 219:1461–1479CrossRefGoogle Scholar
  48. 48.
    Suleiman A, Hashimoto T, Skeldon P, Thompson GE, Echeverria F, Graham MJ, Sproule GI, Moisa S, Habazaki H, Bailey P, Noakes TCQ (2008) Corr Sci 50:1353–1359CrossRefGoogle Scholar
  49. 49.
    Cho EA, Ahn SJ, Kwon HS (2005) Electrochim Acta 50:3383–3389CrossRefGoogle Scholar
  50. 50.
    Mohanty US, Lin KL (2007) J Mater Res 22:2573–2581CrossRefGoogle Scholar
  51. 51.
    Sziráki L, Cziráki A, Vértesy, Kiss L, Ivanova V, Raichevski G, Vitkova S, Marinova S (1999) J Appl Electrochem 29:927–937CrossRefGoogle Scholar
  52. 52.
    Janik-Czachor M, Pisarek M (2009) In: Pyun SI, Lee JW (eds) Modern aspects of electrochemistry 46, Chapter 3. New York, Springer, pp 175–230CrossRefGoogle Scholar
  53. 53.
    Sosa E, Cabrera-Sierra R, Oropeza MT, Hernández F, Casillas N, Tremont R, Cabrera C, González I (2003) Electrochim Acta 48:1665–1674CrossRefGoogle Scholar
  54. 54.
    Kowalski D, Ueda M, Ohtsuka T (2007) Corros Sci 49:3442–3452CrossRefGoogle Scholar
  55. 55.
    Kazeminezhad I, Blythe HJ, Schwarzacher W (2001) Appl Phys Lett 78:1014–1016CrossRefGoogle Scholar
  56. 56.
    Kazeminezhad I, Schwarzacher W (2001) J Magn Magn Mater 226:1650–1652CrossRefGoogle Scholar
  57. 57.
    Kazeminezhad I, Schwarzacher W (2002) J Magn Magn Mater 240:467–468CrossRefGoogle Scholar
  58. 58.
    Kazeminezhad I, Schwarzacher W (2004) J Solid State Electrochem 8:187–189CrossRefGoogle Scholar
  59. 59.
    Massalski TB (ed) (1996) Binary alloy phase diagrams, second edition plus updates on CD-ROM. ASM International, Materials ParkGoogle Scholar
  60. 60.
    Mohanty US, Tripathy BC, Singh P, Das SC (2004) J Electroanal Chem 566:47–52CrossRefGoogle Scholar
  61. 61.
    Mohanty US, Tripathy BC, Singh P, Das SC (2002) J Electroanal Chem 526:63–68CrossRefGoogle Scholar
  62. 62.
    Liu X, Zangari G, Shen L (2000) J Appl Phys 87:5410–5412CrossRefGoogle Scholar
  63. 63.
    Tabakovich I, Inturi V, Riemer S (2002) J Electrochem Soc 149:C18–C22CrossRefGoogle Scholar
  64. 64.
    Perez L, Attenborough K, De Boeck J, Celis JP, Aroca C, Sánchez P, López E, Sánchez MC (2002) J Magn Magn Mater 242–245:163–165CrossRefGoogle Scholar
  65. 65.
    Liu X, Zangari G, Shamsuzzoha M (2003) J Electrochem Soc 150:C159–C168CrossRefGoogle Scholar
  66. 66.
    Van Cittert PH (1931) Z Phys 69:298CrossRefGoogle Scholar
  67. 67.
    Escobar Galindo R, Albella JM (2008) Spectrochim Acta B 63:422–430CrossRefGoogle Scholar
  68. 68.
    Escobar Galindo R, Forniés E, Albella JM (2005) J Anal At Spectrom 20:116–1120Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Katalin Neuróhr
    • 1
  • Attila Csik
    • 2
  • Kálmán Vad
    • 2
  • András Bartók
    • 1
    • 4
  • György Molnár
    • 3
  • László Péter
    • 1
  1. 1.Research Institute for Solid State Physics and OpticsHungarian Academy of SciencesBudapestHungary
  2. 2.Institute of Nuclear ResearchHungarian Academy of SciencesDebrecenHungary
  3. 3.Research Institute for Technical Physics and Materials ScienceHungarian Academy of SciencesBudapestHungary
  4. 4.Laboratoire de Génie Electrique de ParisUniversité Paris SudOrsayFrance

Personalised recommendations