Skip to main content
Log in

Effect of bias voltage and nitrogen pressure on the structure and properties of vacuum-arc (Mo + Ti6%Si)N coatings

  • Physical Electronics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Effect of deposition conditions in reactive nitrogen atmosphere on the growth morphology, phase composition, structure, and mechanical characteristics (microhardness) of vacuum-arc multilayer coatings obtained using evaporation of the (Ti6%Si) and Mo cathodes is studied with the aid of raster electron microscopy, energy-dispersive elemental microanalysis, and microindentation. It is demonstrated that nitrogen atoms are redistributed to the region of the strongest nitride-forming element (Ti) in relatively thin layers (about 7 nm) consisting of substances with substantially different heats of formation (−336 kJ/mol for TiN and −34 kJ/mol for MoN). Such a process leads to lamination with the formation of nitride TiN and metal Mo (weaker nitride-forming element). Nitrogen–metal bonds are saturated in the layers of strong nitrideforming elements Ti(Si) when the nitrogen pressure increases from 6 × 10–4 to 5 × 10–3 Torr in the condensation procedure. Thus, the compound is filled with nitrogen to the stoichiometric composition and, then, the second system of layers based on molybdenum is saturated with nitrogen with the formation of the γ-Mo2N phase. An increase in bias potential U SP from–100 to–200 V stimulates mixing in thin layers with the formation of the (Ti, Si, Mo)N solid solution and leads to a decrease in microhardness from 37 to 32 GPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nanostructured Coatings, Ed. by A. Cavaleiro and J. Th. M. de Hosson (Springer, New York, 2006).

  2. A. D. Pogrebnyak, A. A. Drobyshevskaya, V. M. Beresnev, M. K. Kylyshkanov, E. V. Kirik, S. N. Dub, F. F. Komarov, A. P. Shipilenko, and Yu. Zh. Tuleushev, Tech. Phys. 56, 1023 (2011).

    Article  Google Scholar 

  3. O. V. Sobol’, O. N. Grigorjev, Yu. A. Kunitsky, S. N. Dub, A. A. Podtelezhnikov, and A. N. Stetsenko, Sci. Sintering 38, 63 (2006).

    Article  Google Scholar 

  4. O. V. Sobol’, A. A. Andreev, V. A. Stolbovoi, and V. E. Fil’chikov, Tech. Phys. Lett. 38, 168 (2012).

    Article  ADS  Google Scholar 

  5. W. D. Munz, J. Vac. Sci. Technol., A 4, 2717 (1986).

    Article  ADS  Google Scholar 

  6. A. D. Pogrebnyak, A. P. Shpak, N. A. Azarenkov, and V. M. Beresnev, Phys. Usp. 52, 29 (2009).

    Article  ADS  Google Scholar 

  7. V. M. Beresnev, O. V. Sobol, I. N. Toryanik, A. A. Meylekhov, U. S. Nyemchenko, P. V. Turbin, I. V. Yakushchenko, and M. O. Lisovenko, J. Nano-Electron. Phys. 6, 01030 (2014).

    Google Scholar 

  8. M. Hua, H. Y. Maa, J. Li, and C. K. Mok, Surf. Coat. Technol. 200, 3612 (2006).

    Article  Google Scholar 

  9. O. V. Sobol’, Phys. Solid State 49, 1161 (2007).

    Article  ADS  Google Scholar 

  10. P. I. Ignatenko, Tech. Phys. 56, 264 (2011).

    Article  Google Scholar 

  11. O. V. Sobol’, Phys. Met. Metallogr. 91, 60 (2001).

    ADS  Google Scholar 

  12. O. Knotek, M. Bohmer, T. Leyendecker, and F. Jungblut, Mater. Sci. Eng. A 105-106, 481 (1988).

    Article  Google Scholar 

  13. O. V. Sobol’, A. A. Andreev, S. N. Grigoriev, V. F. Gorban’, S. N. Volosova, S. V. Aleshin, and V. A. Stolbovoy, Probl. At. Sci. Technol., No. 4, 174 (2011).

    Google Scholar 

  14. R. A. Andrievskii, “Synthesis and properties of interstitial phase films,” Usp. Khim. 66 (1), 57 (1997).

    Article  MathSciNet  Google Scholar 

  15. O. V. Sobol’, A. A. Andreev, V. F. Gorban’, V. A. Stolbovoi, A. A. Meilekhov, and A. A. Postel’nik, Tech. Phys. 61, 1060 (2016).

    Article  Google Scholar 

  16. G. Hakansson, J. E. Sundgren, D. Mcintyre, J. E. Greene, and W. D. Munz, Thin Solid Films 153, 55 (1987).

    Article  ADS  Google Scholar 

  17. Metastable, Mechanically Alloyed and Nanocrystalline Materials, Ed. by R. Shulz (Transtech, Zurich, 1996), Part1.

  18. H. M. Benia, M. Guemmaz, G. Schmerber, A. Mosser, and J.-C. Parlebas, Appl. Surf. Sci. 200, 231 (2002).

    Article  ADS  Google Scholar 

  19. S. Heinrich, S. Schirmer, D. Hirsch, J. W. Gerlach, D. Manova, W. Assmann, and S. Mändl, Surf. Coat. Technol. 202, 2310 (2008).

    Article  Google Scholar 

  20. P. H. Mayrhofer, Ch. Mitterer, J. G. Wen, J. E. Greene, and I. Petrov, Appl. Phys. Lett. 86, 131909 (2005).

    Article  ADS  Google Scholar 

  21. I. I. Aksenov, A. A. Andreev, V. A. Belous, V. E. Strel’-nitskii, and V. M. Khoroshikh, Vacuum Arc: Plasma Sources, Coating Deposition, Surface Modification (Naukova Dumka, Kiev, 2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Litovchenko.

Additional information

Original Russian Text © V.M. Beresnev, O.V. Sobol’, S.V. Litovchenko, A.D. Pogrebnyak, P.A. Srebnyuk, V.Yu. Novikov, D.A. Kolesnikov, A.A. Meilekhov, A.A. Postel’nik, U.S. Nemchenko, 2017, published in Zhurnal Tekhnicheskoi Fiziki, 2017, Vol. 87, No. 5, pp. 776–779.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beresnev, V.M., Sobol’, O.V., Litovchenko, S.V. et al. Effect of bias voltage and nitrogen pressure on the structure and properties of vacuum-arc (Mo + Ti6%Si)N coatings. Tech. Phys. 62, 795–798 (2017). https://doi.org/10.1134/S1063784217050073

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784217050073

Navigation