Skip to main content
Log in

Voltammetric detection of synthetic water-soluble phenolic antioxidants using carbon nanotube based electrodes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Glassy carbon electrodes (GCE) modified with carbon nanotubes (CNT) have been created for detection of phenolic compounds—one of the important group of antioxidants in life sciences. The surface of electrode has been characterized by atomic force microscopy. The presence of CNT leads to an at least 20-fold increase in the surface roughness of the electrode. The CNT layer displays closely intertwined vermicular structures with high degree of homogeneity at CNT suspension concentration of 0.2–0.5 mg L−1. Synthetic water-soluble antioxidants (hydroquinone, catechol, pyrogallol, and their derivatives) are electrochemically active on bare GCE and CNT-modified GCE in phosphate buffer solution pH 7.4. Effect of substitutes in molecular structure of phenolic antioxidants has been evaluated. In several cases, oxidation at CNT-modified GCE occurs at potentials that are less positive by 100–200 mV in comparison to bare GCE. The electrodes were studied with respect to their capability of phenols voltammetric sensing. CNT-modified GCE display an enlarged linear range in the calibration graphs and lower detection limits. Voltammetric method for determination of hydroquinone, catechol, pyrogallol, and their derivatives has been developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pospisil J, Klemchuk PP (1989) Oxidation inhibition in organic materials, V. I. CRC Press Inc, Boca Raton

    Google Scholar 

  2. Rice-Evans CA, Miller NJ, Paganga G (1996) Free Radic Biol Med 20:933–956

    Article  CAS  Google Scholar 

  3. Lin H, Gan T, Wu K (2009) Food Chem 113:701–704

    Article  CAS  Google Scholar 

  4. Safavi A, Maleki N, Tajabadi F (2007) Analyst 132:54–58

    Article  CAS  Google Scholar 

  5. de Oliveira IRWZ, Neves A, Vieira IC (2008) Sens Actuators B 129:424–430

    Article  Google Scholar 

  6. Freire RS, Durán N, Kubota LT (2002) J Braz Chem Soc 13:456–462

    Article  CAS  Google Scholar 

  7. Kulys J, Vidziunaite R (2003) Biosens Bioelectron 18:319–325

    Article  CAS  Google Scholar 

  8. Roy JJ, Abraham TE, Abhijith KS, Kumar PVS, Thakur MS (2005) Biosens Bioelectron 21:206–211

    Article  CAS  Google Scholar 

  9. Dinçkaya E, Akyilmaz E, Akgöl S, Tatar Önal S, Zihnioglu F, Telefoncu A (1998) Biosci Biotechnol Biochem 62:2098–2100

    Article  Google Scholar 

  10. Kochana J, Nowak P, Jarosz-Wilkołazka A, Bieroń M (2008) Microchem J 89:171–174

    Article  CAS  Google Scholar 

  11. Liu Z, Liu Y, Yang H, Yang Y, Shen G, Yu R (2005) Anal Chim Acta 533:3–9

    Article  CAS  Google Scholar 

  12. Pérez López B, Merkoçi A (2009) Analyst 134:60–64

    Article  Google Scholar 

  13. Tang L, Zeng G, Liu J, Xu X, Zhang Y, Shen G, Li Y, Liu C (2008) Anal Bioanal Chem 391:679–685

    Article  CAS  Google Scholar 

  14. Adamski J, Kochana J (2008) Acta Chim Slov 55:623–626

    CAS  Google Scholar 

  15. Musameh M, Wang J, Merkoci A, Lin Y (2002) Electrochem Commun 4:743–746

    Article  CAS  Google Scholar 

  16. Wang J (2005) Electroanalysis 17:7–14

    Article  CAS  Google Scholar 

  17. Xue K, Xu W, Yin S (2007) J Electrochem Soc 154:F147–F151

    Article  CAS  Google Scholar 

  18. Zhang D, Peng Y, Qi H, Gao Q, Zhang C (2009) Sens Actuators B 136:113–121

    Article  Google Scholar 

  19. Ghanem MA (2007) Electrochem Commun 9:2501–2506

    Article  CAS  Google Scholar 

  20. Aziz MdA, Selvaraju T, Yang H (2007) Electroanalysis 19:1543–1546

    Article  Google Scholar 

  21. Ziyatdinova GK, Gainetdinova AA, Budnikov GK (2010) J Analyt Chem 65:929–934

    Article  CAS  Google Scholar 

  22. Sharafutdinova EN (2007) Potentiometry in investigation of antioxidant activity of plant objects. Academic dissertation, Ekaterinburg (In Russian)

  23. Red’kin AN, Kipin VA, Malyarevich LV (2006) Inorg Mat 42:242–245

    Article  Google Scholar 

  24. Grazhulene SS, Red’kin AN, Telegin GF, Bazhenov AV, Fursova TN (2010) J Analyt Chem 65:682–689

    Article  CAS  Google Scholar 

  25. Ross SD, Finkelstein M, Rudd EJ (1975) Anodic oxidation. Academic, New York

    Google Scholar 

  26. Baizer MM, Lund H (1983) Organic electrochemistry. Marcel Dekker, New York

    Google Scholar 

  27. Kilmartin PA, Hsu CF (2003) Food Chem 82:501–512

    Article  CAS  Google Scholar 

  28. Yang B, Kotani A, Arai K, Kusu F (2001) Anal Sci 17:599–604

    Article  CAS  Google Scholar 

  29. Yang B, Kotani A, Arai K, Kusu F (2001) Chem Pharm Bull 49:747–751

    Article  CAS  Google Scholar 

  30. Novak I, Šeruga M, Komorsky-Lovrić Š (2009) Electroanalysis 21:1019–1025

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to thank Prof. Khiena Brainina for granting samples of synthetic phenolic antioxidants. Financial support of RFBR (grant 09-03-00309-a) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guzel Ziyatdinova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ziyatdinova, G., Gainetdinova, A., Morozov, M. et al. Voltammetric detection of synthetic water-soluble phenolic antioxidants using carbon nanotube based electrodes. J Solid State Electrochem 16, 127–134 (2012). https://doi.org/10.1007/s10008-011-1295-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1295-x

Keywords

Navigation