Skip to main content
Log in

Catechol determination in compost bioremediation using a laccase sensor and artificial neural networks

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

An electrochemical biosensor based on the immobilization of laccase on magnetic core-shell (Fe3O4–SiO2) nanoparticles was combined with artificial neural networks (ANNs) for the determination of catechol concentration in compost bioremediation of municipal solid waste. The immobilization matrix provided a good microenvironment for retaining laccase bioactivity, and the combination with ANNs offered a good chemometric tool for data analysis in respect to the dynamic, nonlinear, and uncertain characteristics of the complex composting system. Catechol concentrations in compost samples were determined by using both the laccase sensor and HPLC for calibration. The detection range varied from 7.5 × 10–7 to 4.4 × 10–4 M, and the amperometric response current reached 95% of the steady-state current within about 70 s. The performance of the ANN model was compared with the linear regression model in respect to simulation accuracy, adaptability to uncertainty, etc. All the results showed that the combination of amperometric enzyme sensor and artificial neural networks was a rapid, sensitive, and robust method in the quantitative study of the composting system.

Structure of the magnetic carbon paste electrode used in the electrochemical biosensor

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lante A, Crapisi A, Krastanov A, Spettoli P (2000) Process Biochem 36:51–58

    Article  CAS  Google Scholar 

  2. Topping DC, Bernard LG, O’Donoghue JL, English JC (2007) Food Chem Toxicol 45:70–78

    Article  Google Scholar 

  3. Canofeni S, Sario SD, Mela J, Pilloton R (1994) Anal Lett 27:1659–1662

    CAS  Google Scholar 

  4. Campitelli P, Ceppi S (2008) Geoderma 144:325–333

    Article  CAS  Google Scholar 

  5. Faure D, Bouillant ML, Jacoud C, Bally R (1996) Phytochemistry 42:357–359

    Article  Google Scholar 

  6. Kim KR, Kim H (2000) J Chromatogr A 866:87–96

    Article  CAS  Google Scholar 

  7. Corcia AD, Bellioni A, Madbouly MD, Marchese S (1996) J Chromatogr A 733:383–393

    Article  Google Scholar 

  8. Miró M, Frenzel W (2003) Analyst 128:1291–1297

    Article  Google Scholar 

  9. Yaropolov AI, Skorobogat’ko OV, Vartanov SS, Varfolomeyev SD (1994) Appl Biochem Biotech 49:257–280

    Article  Google Scholar 

  10. Xu F (1999) Laccase: molecular properties, enzymology, and preparation of laccase. In: Flickinger MC, Drew SW (eds) Encylopedia of bioprocess technology, fermentation biocatalysis and bioseparation. Wiley, New York, pp 1545–1554

    Google Scholar 

  11. Bessant C, Saini S (1999) Anal Chem 71:2806–2813

    Article  CAS  Google Scholar 

  12. Hajmeer MN, Basheer IA (2003) Int J Food Microbiol 82:233–243

    Article  CAS  Google Scholar 

  13. Lek S, Guégan JF (1999) Ecol Model 120:65–73

    Article  Google Scholar 

  14. Gutés A, Céspedes F, Alegret S, del Valle M (2005) Biosens Bioelectron 20:1668–1673

    Article  Google Scholar 

  15. Gutés A, Céspedes F, Alegret S, del Valle M (2005) Talanta 66:1187–1196

    Article  Google Scholar 

  16. Cortina M, Gutés A, Alegret S, del Valle M (2005) Talanta 66:1197–1206

    Article  Google Scholar 

  17. Ni Y, Qiu P, Kokot S (2005) Anal Chim Acta 537:321–330

    Article  Google Scholar 

  18. Sahoo GB, Ray C, Mehnert E, Keefer DA (2006) Sci Total Environ 367:234–251

    Article  Google Scholar 

  19. Zhang Y, Zeng GM, Tang L, Huang DL, Jiang XY, Chen YN (2007) Biosens Bioelectron 22:2121–2126

    Article  Google Scholar 

  20. Chapuis-Lardy L, Contour-Ansel D, Bernhard-Reversat F (2002) Plant Sci 163:217–222

    Article  CAS  Google Scholar 

  21. Zeng GM, Tang L, Shen GL, Huang GH, Niu CG (2004) Int J Environ Anal Chem 84:761–774

    Article  CAS  Google Scholar 

  22. Onkal-Engin G, Demir I, Engin SN (2005) Environ Modell Softw 20:843–850

    Article  Google Scholar 

  23. Siripatrawan U, Linz JE, Harte BR (2006) Sensor Actuat B 119:64–69

    Article  Google Scholar 

  24. Gutés A, Ibáñez AB, Céspedes F, Alegret S, del Valle M (2005) Anal Bioanal Chem 382:471–476

    Article  Google Scholar 

  25. Günaydin HM, Doğan SZ (2004) Int J Proj Manag 22:595–602

    Article  Google Scholar 

  26. Bachmann TT, Leca B, Vilatte F, Marty JL, Fournier D, Schmid RD (2000) Biosens Bioelectron 15:193–201

    Article  CAS  Google Scholar 

  27. Roy JJ, Abraham TE, Abhijith KS, Kumar PVS, Thakur MS (2005) Biosens Bioelectron 21:206–211

    Article  Google Scholar 

  28. Jarosz-Wilkołazka A, Ruzgas T, Gorton L (2005) Talanta 66:1219–1224

    Article  Google Scholar 

Download references

Acknowledgements

The study was financially supported by the National Natural Science Foundation of China (No.50608029), the National 863 High Technologies Research Foundation of China (No.2004AA649370), the National Basic Research Program (973 Program) (No. 2005CB724203), the Natural Foundation for Distinguished Young Scholars (No.50425927, No.50225926) and Program for Changjiang Scholars and Innovative Research Team in University (IRT0719).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangming Zeng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, L., Zeng, G., Liu, J. et al. Catechol determination in compost bioremediation using a laccase sensor and artificial neural networks. Anal Bioanal Chem 391, 679–685 (2008). https://doi.org/10.1007/s00216-008-2049-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2049-1

Keywords

Navigation