Skip to main content
Log in

Magnesium ion-conducting gel polymer electrolytes dispersed with fumed silica for rechargeable magnesium battery application

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Effect of fumed silica dispersion on poly(vinylidene fluoride-co-hexafluoropropylene)-based magnesium ion-conducting gel polymer electrolyte has been studied using various physical and electrochemical techniques. The composite gel electrolytes are free-standing and flexible films with enough mechanical strength. The optimized composition with 3 wt.% filler offers a maximum ionic conductivity of ∼1.1 × 10−2 S cm−1 at ∼25 °C with good thermal and electrochemical stabilities. The Mg2+ ion conduction in the gel nanocomposite film is confirmed from the cyclic voltammetry, impedance spectroscopy, and transport number measurements. The space-charge layers formed between filler particles and gel electrolyte are responsible for the enhancement in ionic conductivity. The applicability of the gel nanocomposite to a rechargeable battery is examined by fabricating a prototype cell consisting of Mg [or Mg-multiwalled carbon nanotube (MWCNT) composite] and MoO3 as negative and positive electrodes, respectively. The discharge capacity and the rechargeability of the cell have been improved when Mg metal is substituted by Mg-MWCNT composite. The discharge capacity of the optimized cell has found to be ∼175 mAh g−1 of MoO3 for an initial ten charge–discharge cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Song JY, Wang YY, Wan CC (1999) J Power Sources 77:183–197

    Article  CAS  Google Scholar 

  2. Agrawal RC, Pandey GP (2008) J Phys D Appl Phys 41:223001–223018

    Article  Google Scholar 

  3. Ciuffa F, Croce F, D’Epifanio A, Panero S, Scrosati B (2004) J Power Sources 127:53–57

    Article  CAS  Google Scholar 

  4. Stephan AM (2006) Euro Polym J 42:21–42

    Article  Google Scholar 

  5. Dias FB, Plomp L, Veldhuis JBJ (2000) J Power Sources 88:169–191

    Article  CAS  Google Scholar 

  6. Schalkwijk WAV, Scrosati B (eds) (2002) Advances in Lithium-Ion Batteries. Kluwer/Plenum Publisher, New York

    Google Scholar 

  7. Kim HS, Periasamy P, Moon SI (2005) J Power Sources 141:293–297

    Article  CAS  Google Scholar 

  8. Vondrak J, Reiter J, Velicka J, Klapste B, Sedlarıkova M, Dvorak J (2005) J Power Sources 146:436–440

    Article  CAS  Google Scholar 

  9. Akashi H, Shibuya M, Orui K, Shibamoto G, Sekai K (2002) J Power Sources 112:577–582

    Article  CAS  Google Scholar 

  10. Quartarone E, Tomasi C, Mustarelli P, Appetecchi GB, Croce F (1998) Electrochem Acta 43:1435–1439

    Article  CAS  Google Scholar 

  11. Slane S, Salomon M (1995) J Power Sources 55:7–10

    Article  CAS  Google Scholar 

  12. Tarascon JM, Gozdz AS, Schmutz CN, Shokoohi FK, Warren PC (1996) Solid State Ionics 86–88:49–54

    Article  Google Scholar 

  13. Appetecchi GB, Romagnoli P, Scrosati B (2001) Electrochem Commun 3:281–284

    Article  CAS  Google Scholar 

  14. Gentili V, Panero S, Reale P, Scrosati B (2007) J Power Sources 170:185–190

    Article  CAS  Google Scholar 

  15. Pandey GP, Agrawal RC, Hashmi SA (2009) J Power Sources 190:563–572

    Article  CAS  Google Scholar 

  16. Tarascon JM, Armand M (2001) Nature 414:359–367

    Article  CAS  Google Scholar 

  17. Aurbach D, Lu Z, Schechter A, Gofer Y, Gizbar H, Turgeman R, Cohen Y, Moshkovich M, Levi E (2000) Nature 407:724–727

    Article  CAS  Google Scholar 

  18. Novak P, Imhof R, Haas O (1999) Electrochim Acta 45:351–367

    Article  CAS  Google Scholar 

  19. Pandey GP, Hashmi SA (2009) J Power Sources 187:627–634

    Article  CAS  Google Scholar 

  20. Lancry E, Levi E, Gofer Y, Levi M, Salitra G, Aurbach D (2004) Chem Mater 16:2832–2838

    Article  CAS  Google Scholar 

  21. Aurbach D, Suresh GS, Levi E, Mitelman A, Mizrahi O, Chusid O, Brunelli M (2007) Adv Mater 19:4260–4267

    Article  CAS  Google Scholar 

  22. Morita M, Yoshimoto N, Yakushiji S, Ishikawa M (2001) Electrochem Solid State Lett 4:A177–A179

    Article  CAS  Google Scholar 

  23. Miles MH, Park KH, Stilwell DE (1990) J Electrochem Soc 137:3393–3400

    Article  CAS  Google Scholar 

  24. Kumar GG, Munichandraiah N (1999) Electrochim Acta 44:2663–2666

    Article  CAS  Google Scholar 

  25. Hashmi SA, Chandra S (1995) J Mater Sci Eng B 34:18–26

    Article  Google Scholar 

  26. Evans J, Vincent CA, Bruce PG (1987) Polymer 28:2324–2328

    Article  CAS  Google Scholar 

  27. Gregorio JR, Cestari M (1994) J Polym Sci BPolym Phys 32:859–870

    Article  CAS  Google Scholar 

  28. Abbrent S, Plestil J, Hlavata D, Lindgren J, Tegenfeldt J, Wendsjo A (2001) Polymer 42:1407–1416

    Article  CAS  Google Scholar 

  29. Martinelli A, Matic A, Jacobsson P, Börjesson L, Navarra MA, Panero S, Scrosati B (2007) J Electrochem Soc 154:G183–G187

    Article  CAS  Google Scholar 

  30. Tripathy SK, JrR P, Hopfinger AJ, Banik NC, Taylor PL (1979) Macromolecules 12:656–658

    Article  CAS  Google Scholar 

  31. Chen HW, Chiu CY, Chang FC (2002) J Polym Sci BPolym Phys 40:1342–1353

    Article  CAS  Google Scholar 

  32. Petrowsky M, Frech R (2003) Electrochim Acta 48:2093–2097

    Article  CAS  Google Scholar 

  33. Raghavan SR, Riley MW, Fedkiw PS, Khan SA (1998) Chem Mater 10:244–251

    Article  CAS  Google Scholar 

  34. Grillone AM, Panero S, Retamal BA, Scrosati B (1999) J Electrochem Soc 146:27–31

    Article  CAS  Google Scholar 

  35. Chandra S, Sekhon SS, Arora N (2000) Ionics 6:112–118

    Article  CAS  Google Scholar 

  36. Chandra S, Sekhon SS, Srivastava R, Arora N (2002) Solid State Ionics 154–155:609–619

    Article  Google Scholar 

  37. Sharma JP, Sekhon SS (2007) Solid State Ionics 178:439–445

    Article  CAS  Google Scholar 

  38. Kumar D, Hashmi SA (2010) J Power Sources 195:5101–5108

    Article  CAS  Google Scholar 

  39. Choi BK, Shin K (1996) Solid State Ionics 86–88:303–306

    Article  Google Scholar 

  40. Hashmi SA, Upadhayaya HM, Thakur AK (2000) In: Chowdari BVR, Wang W (eds) Solid State Ionics: Materials and Devices. World Scientific, Singapore, pp 461–466

    Google Scholar 

  41. Pandey GP, Hashmi SA, Agrawal RC (2008) Solid State Ionics 179:543–549

    Article  CAS  Google Scholar 

  42. Maier J (1994) Solid State Ionics 70–71:43–51

    Article  Google Scholar 

  43. Maier J (1995) Prog Solid State Chem 23:171–263

    Article  CAS  Google Scholar 

  44. Kumar B (2004) J Power Sources 135:215–231

    Article  CAS  Google Scholar 

  45. Kumar B, Nellutla S, Thokchom JS, Chen C (2006) J Power Sources 160:1329–1335

    Article  CAS  Google Scholar 

  46. Munichandraiah N, Sivasankar G, Scanlon LG, Marsh RA (1997) J Appl Polym Sci 65:2191–2199

    Article  CAS  Google Scholar 

  47. Munichandraiah N, Scanlon LG, Marsh RA, Kumar B, Sircar AK (1995) J Appl Electrochem 25:857–863

    Article  CAS  Google Scholar 

  48. Spahr ME, Novak P, Haas O, Nesper R (1995) J Power Sources 54:346–351

    Article  CAS  Google Scholar 

  49. Kumar GG, Munichandraiah N (2001) J Power Sources 102:46–54

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors acknowledge the financial supports received from the Council of Scientific and Industrial Research (CSIR), New Delhi (Sanction No.: 03(1069)/06/EMR-II, 2006) and University of Delhi (under the Scheme 11-17 Research Fund). GPP is grateful to the Council of Scientific and Industrial Research (CSIR), New Delhi for the award of Research Associateship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Hashmi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandey, G.P., Agrawal, R.C. & Hashmi, S.A. Magnesium ion-conducting gel polymer electrolytes dispersed with fumed silica for rechargeable magnesium battery application. J Solid State Electrochem 15, 2253–2264 (2011). https://doi.org/10.1007/s10008-010-1240-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1240-4

Keywords

Navigation