Skip to main content
Log in

Electrical properties of the protonic conductor 1 mol% Y-doped \( {\hbox{BaZr}}{{\hbox{O}}_{{3 - \delta }}} \)

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Much attention has been paid to barium zirconates because their high protonic conductivity and chemical stability are excellent properties for solid electrolytes. However, most studies have focused on highly doped materials such as 10 or 20 mol% Y-doped barium zirconates. In this study, the bulk and the grain boundary electrical properties of 1 mol% Y-doped barium zirconate are investigated as a function of temperature, water partial pressure, and oxygen partial pressure. At low temperatures and in wet atmospheres, the bulk of the barium zirconate predominantly conducts protonic defects, whereas, at high temperatures and in dry conditions, it is mixed oxygen ionic and electron-hole conducting. In the grain boundary, the protonic conductivity is a few orders of magnitude lower than the protonic conductivity in the bulk. In this study, possible causes for the low protonic conduction at the grain boundaries are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Norby T (1999) Solid State Ionics 125:1

    Article  CAS  Google Scholar 

  2. Park HJ, Choa YH (2010) Electrochem Solid-State Lett 13:K49

    Article  CAS  Google Scholar 

  3. Kreuer KD (1996) Chem Mater 8:610

    Article  CAS  Google Scholar 

  4. Kreuer KD (2003) Annu Rev Mater Res 33:333

    Article  CAS  Google Scholar 

  5. Nomura K, Kageyama H (2007) Solid State Ionics 178:661

    Article  CAS  Google Scholar 

  6. Fabbri E, Pergolesi D, Licoccia S, Traversa E (2010) Solid State Ionics 181:1043

    Article  CAS  Google Scholar 

  7. Azad AK, Savaniu C, Tao S, Duval S, Holtappels P, Ibberson RM, Irvine JTS (2008) J Mater Chem 18:3414

    Article  CAS  Google Scholar 

  8. KjØlseth C, Fjeld H, Prytz Ø, Dahl PI, Estournes C, Haugsrud R, Norby T (2010) Solid State Ionics 181:268

    Article  Google Scholar 

  9. Kuz’min AV, Balakireva VB, Plaksin SV, Gorelov VP (2009) Russ J Electrochem 12:1460

    Google Scholar 

  10. Yamazaki Y, Hernandez-Sanchez R, Haile SM (2009) Chem Mater 21:2755

    Article  CAS  Google Scholar 

  11. Duval SBC, Holtappels P, Vogt UF, Stimming U, Graule T (2009) Fuel Cells 5:613

    Article  Google Scholar 

  12. Wang JX, Su WH, Xu DP, He TM (2006) J Alloys Compd 421:45

    Article  CAS  Google Scholar 

  13. Davis RA, Islam MS, Gale JD (1999) Solid State Ionics 126:323

    Article  Google Scholar 

  14. Giannici F, Longo A, Kreuer KD, Balerna A, Martorana A (2010) Solid State Ionics 181:122

    Article  CAS  Google Scholar 

  15. Bablio P, Haile SM (2005) J Am Ceram Soc 88(9):2362

    Article  Google Scholar 

  16. Gao D, Guo R (2010) J Alloys Compd 493:288

    Article  CAS  Google Scholar 

  17. Azad AM, Subramaniam S (2002) Mater Res Bull 37:11

    Article  CAS  Google Scholar 

  18. Kreuer KD, Adams S, Münch W, Fuchs A, Klock U, Maier J (2001) Solid State Ionics 145:295

    Article  CAS  Google Scholar 

  19. Bohn HG, Schober T (2000) J Am Ceram Soc 83:768

    Article  CAS  Google Scholar 

  20. Park JY, Choi GM (2002) Solid State Ionics 154:535

    Article  Google Scholar 

  21. Chen X, Rieth L, Miller MS, Solzbacher F (2009) Sens actuators B, Chem 137:578

    Article  Google Scholar 

  22. Iguchi F, Sata N, Tsurui T, Yugami H (2007) Solid State Ionics 178:691

    Article  CAS  Google Scholar 

  23. Bohn HG, Schober T, Mono T, Schilling W (1999) Solid State Ionics 117:219

    Article  CAS  Google Scholar 

  24. Aoki M, Chiang YM, Kosacki I, Lee IJR, Tuller H, Liu YP (1996) J Am Ceram Soc 79:1169

    Article  CAS  Google Scholar 

  25. Kreuer KD (1999) Solid State Ionics 125:285

    Article  CAS  Google Scholar 

  26. Shi C, Yoshino M, Morinaga M (2005) Solid State Ionics 176:1091

    Article  CAS  Google Scholar 

  27. Park HJ, Kim S (2007) J Phys Chem C 111:14903

    Article  CAS  Google Scholar 

Download references

Acknowledgment

I thank Prof. Sangtae Kim for the valuable discussions and study and Dr. Chan Kwak for the SOFC project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee Jung Park.

Appendix

Appendix

The \( {P_{{{{\rm{H}}_2}{\rm{O}}}}} \)-dependence of the protonic conductivity is defined as the ENC. I consider three cases.

  1. (1)

    ENC: \( 2\left[ {{\hbox{V}}_{\rm{O}}^{{ \bullet \bullet }}} \right] \approx \left[ {{\hbox{Y}}_{\rm{Zr}}^{\prime }} \right] \)

In this case, the protonic defect and the corresponding protonic conductivity strongly depend on the water partial pressure as shown below.

$$ \left[ {OH_O^{ \bullet }} \right] = {\left( {K\left[ {{\hbox{V}}_{\rm{O}}^{{ \bullet \bullet }}} \right]\left[ {{{\hbox{O}}_{\rm{O}}}} \right]} \right)^{{1/2}}}P_{{{{\rm{H}}_2}{\rm{O}}}}^{{1/2}} $$
(A1)
$$ {\sigma_{{{\rm{O}}{{\rm{H}}^{ \bullet }}}}} = \left[ {{\hbox{OH}}_{\rm{O}}^{ \bullet }} \right]e{\mu_{{{\rm{O}}{{\rm{H}}^{ \bullet }}}}} \propto P_{{{{\rm{H}}_2}{\rm{O}}}}^{{1/2}}\left( {\because {c_{{{\rm{v}}\bullet \bullet }}} \sim {\hbox{constant}}} \right). $$
(A2)
  1. (2)

    ENC: \( 2\left[ {{\hbox{V}}_{\rm{O}}^{{ \bullet \bullet }}} \right] + \left[ {OH_O^{ \bullet }} \right] \approx \left[ {{\hbox{Y}}_{\rm{Zr}}^{\prime }} \right] \)

In perovskite materials (ABO3), the site restriction is given by

$$ \left[ {{\hbox{V}}_{\rm{O}}^{{ \bullet \bullet }}} \right] + \left[ {{\hbox{OH}}_{\rm{O}}^{ \bullet }} \right] + \left[ {{\hbox{O}}_{\rm{O}}^{\rm{x}}} \right] = 3. $$
(A3)

Considering Eq. A3 and Eq. 4, the protonic defect can be estimated as following.

$$ \left[ {{\hbox{OH}}_{\rm{O}}^{ \bullet }} \right] = \frac{{3K{P_{{{{\rm{H}}_2}{\rm{O}}}}} - \sqrt {{K{P_{{{{\rm{H}}_2}{\rm{O}}}}}\left( {9K{P_{{{H_2}O}}} - 6K{P_{{{H_2}O}}}S + K{P_{{{H_2}O}}}{S^2} + 24S - 4{S^2}} \right.}} }}{{K{P_{{{{\rm{H}}_2}{\rm{O}}}}} - 4}} $$
(A4)

where S denotes an effective dopant concentration (Ref. 4). Thus, in this condition,

$$ {\sigma_{{{\rm{O}}{{\rm{H}}^{ \bullet }}}}} = \left[ {{\hbox{OH}}_{\rm{O}}^{ \bullet }} \right]e{\mu_{{{\rm{O}}{{\rm{H}}^{ \bullet }}}}} \propto P_{{{{\rm{H}}_2}{\rm{O}}}}^{{0\sim 1/2}} $$
(A5)
  1. (3)

    ENC: \( \left[ {{\hbox{OH}}_{\rm{O}}^{ \bullet }} \right] \approx \left[ {{\hbox{Y}}_{\rm{Zr}}^{\prime }} \right] \)

The protonic conductivity hardly depends on the water partial pressure owing to the fixed concentration of the acceptor.

$$ \left[ {{\hbox{OH}}_{\rm{O}}^{ \bullet }} \right] = \left[ {Y_{\rm{Zr}}^{\prime }} \right] = {\hbox{constant}} $$
(A6)
$$ {\sigma_{{{\rm{O}}{{\rm{H}}^{ \bullet }}}}} = \left[ {{\hbox{OH}}_{\rm{O}}^{ \bullet }} \right]e{\mu_{{{\rm{O}}{{\rm{H}}^{ \bullet }}}}} \propto P_{{{{\rm{H}}_2}{\rm{O}}}}^0 $$
(A7)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, H.J. Electrical properties of the protonic conductor 1 mol% Y-doped \( {\hbox{BaZr}}{{\hbox{O}}_{{3 - \delta }}} \) . J Solid State Electrochem 15, 2205–2211 (2011). https://doi.org/10.1007/s10008-010-1237-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1237-z

Keywords

Navigation