Skip to main content

Insight into Structural and Electrical Properties of Potassium and Lithium Substituted Non-stoichiometric Sodium Bismuth Titanate (Na0.54Bi0.46TiO3-δ)

  • Conference paper
  • First Online:
Advanced Functional Materials and Devices

Part of the book series: Springer Proceedings in Materials ((SPM,volume 14))

  • 503 Accesses

Abstract

Sodium bismuth titanate (Na0.5Bi0.5TiO3) has been reported as a fast oxide ion conductor. Sodium rich non-stoichiometric Na0.54Bi0.46TiO3-δ has also been reported to have good oxide ion conductivity. Here, we report the influence of Potassium (K) and Lithium (Li) doping on the A-site (i.e. Na site) of the Na0.54Bi0.46TiO3-δ system. XRD results revealed the formation of perovskite rhombohedral phase having R3c space group. SEM study showed the existence of dense morphology in the sintered samples. TGA technique is performed to estimate the oxygen deficiency in the investigated system. Impedance results suggested an increase in the bulk conductivity by doping of potassium; however, a decrease in the conductivity was observed for Li-doping on A-site. A correlation between the structural and electrical properties have been established to explain the conductivity behaviour. Further, three-dimensional oxide ion diffusion mechanism was also studied using the bond valance energy (BVE) technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yang F, Zhang H, Li L, Reaney IM, Sinclair DC (2016) Chem Mater 28:5269

    Article  CAS  Google Scholar 

  2. Khatua DK, Mehrotra T, Mishra A, Majumdar B, Senyshyn A, Ranjan R (2017) Acta Mater

    Google Scholar 

  3. Bi N, Li M, Pietrowski MJ, De Souza RA, Zhang H, Reaney IM, Cook SN, Kilner JA, Sinclair DC (2013) Nat Mater 13:31

    Google Scholar 

  4. Yang F, Li M, Li L, Wu P, Pradal-Velázque E, Sinclair DC (2017) J. Mater Chem A 5:21658

    Article  CAS  Google Scholar 

  5. R. Garg, A. Senyshyn, H. Boysen, and R. Ranjan, J. Phys. Condens. Matter 20, 0 (2008)

    Google Scholar 

  6. Adams S (2006) Solid State Ionics 177:1625

    Article  CAS  Google Scholar 

  7. Koch L, Steiner S, Meyer KC, Seo IT, Albe K, Frömling T (2017) J Mater Chem C 5:8958

    Article  Google Scholar 

  8. Meyer KC, Albe K (2017) J Mater Chem A 5:4368

    Article  CAS  Google Scholar 

  9. Li M, Zhang H, Cook SN, Li L, Kilner JA, Reaney IM, Sinclair DC (2015) Chem Mater 27:629

    Article  CAS  Google Scholar 

  10. Yang F, Wu P, Sinclair DC (2017) Solid State Ionics 299:38

    Article  CAS  Google Scholar 

  11. Shih DPC, Aguadero A (2018) S. J. Skinner 317:32

    CAS  Google Scholar 

  12. He X, Mo Y (2015) Phys Chem Chem Phys 17:18035

    Article  CAS  Google Scholar 

  13. Bhattacharyya R, Das S, Omar S (2018) Acta Mater 159:8

    Article  CAS  Google Scholar 

  14. Shannon RD (1976) Acta Cryst. A 32

    Google Scholar 

  15. Xiao R, Li H, Chen L (2015) Sci Rep 5:1

    CAS  Google Scholar 

  16. Singh P, Pandey R, Miruszewski T, Dzierzgowski K, Mielewczyk-Gryn A, Singh P (2020) ACS Omega 5:30395

    Article  CAS  Google Scholar 

  17. Tealdi C, Mustarelli P (2014) Chem Commun 50:14732

    Article  CAS  Google Scholar 

  18. Franco A, Banerjee P, Romanholo PL (2018) J Alloys Compd 764:122

    Article  CAS  Google Scholar 

  19. Rajashree C, Balu AR, Nagarethinam VS (2015) Surf Eng 31:316

    Article  CAS  Google Scholar 

  20. Tansley TI, Foley CP (1986) J App Phys 59:3241

    Google Scholar 

  21. Moss TS (1954) Proc Phys Soc Sect B 67:775

    Article  Google Scholar 

  22. Singh P, Jha PK, Sinha ASK, Jha PA, Singh P (2020) Solid State Ionics 345

    Google Scholar 

  23. Pandey N, Thakur AK (2010) Adv Appl Ceram 109:83

    Article  CAS  Google Scholar 

  24. England AW, Simmons G, Strangway D (1968) J Geophys Res 73:3219

    Article  Google Scholar 

  25. Zhang H, Ramadan AHH, De Souza RA (2018) J Mater Chem A 6:9116

    Article  CAS  Google Scholar 

  26. Li K, Xue D (2006) J Phys Chem A 110:11332

    Article  CAS  Google Scholar 

  27. Singh P, Jha PK, Jha PA, Singh P (2019) Int J Hydrogen Energy

    Google Scholar 

Download references

Acknowledgements

One of the authors, Pragati Singh, acknowledges the support of SERB for project funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Raghvendra Pandey or Prabhakar Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, P., Pandey, R., Singh, P. (2022). Insight into Structural and Electrical Properties of Potassium and Lithium Substituted Non-stoichiometric Sodium Bismuth Titanate (Na0.54Bi0.46TiO3-δ). In: Krupanidhi, S.B., Gupta, V., Sharma Kaushik, A., Singh, A.K. (eds) Advanced Functional Materials and Devices. Springer Proceedings in Materials, vol 14. Springer, Singapore. https://doi.org/10.1007/978-981-16-5971-3_20

Download citation

Publish with us

Policies and ethics