Skip to main content
Log in

Evolution of an iron passive film in a borate buffer solution (pH 8.4)

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The evolution under open-circuit conditions of iron passive films formed at 0.8 VSCE in a borate buffer solution at pH 8.4 was investigated with electrochemical impedance spectroscopy (EIS) and cyclic voltammetry. The composition of the freshly formed passive film as determined by X-ray photoelectron spectroscopy (XPS) was found to be in agreement with a bilayer model, where the inner layer is composed mainly of iron oxide and the outer layer consists of a hydrated material. Results of XPS measurements also showed that the open-circuit breakdown of passive films was consistent with a reductive dissolution mechanism. When the iron electrode reached an intermediate stage in the open-circuit potential decay (approximately −0.3 VSCE), the oxide film, containing both Fe(II) and Fe(III), was still protective. The impedance response in this stage exhibited a mixed control by charge transfer at the metal/film and film/solution interfaces and diffusion of point defects through the film. At the final stage of the open-circuit potential decay (approximately −0.7 VSCE), the oxide film was very thin, and the ratio of Fe3+/Fe2+ and O2−/OH had decreased significantly. The impedance response also exhibited a mixed charge-transfer–diffusion control, but the diffusion process was related to transport of species in the electrolyte solution resulting from dissolution of the oxide film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Nagayama M, Cohen M (1962) J Electrochem Soc 109:781–790

    Article  CAS  Google Scholar 

  2. Nagayama M, Cohen M (1963) J Electrochem Soc 110:670–680

    Article  CAS  Google Scholar 

  3. Cahan BD, Chen CT (1982) J Electrochem Soc 129:921–925

    Article  CAS  Google Scholar 

  4. Brett ME, Parkin KM, Graham MJ (1986) J Electrochem Soc 133:2031–2035

    Article  CAS  Google Scholar 

  5. Davenport AJ, Sansone M (1995) J Electrochem Soc 142:725–730

    Article  CAS  Google Scholar 

  6. Oblonsky LJ, Davenport AJ, Ryan MP, Isaacs HS, Newman RC (1997) J Electrochem Soc 144:2398–2404

    Article  Google Scholar 

  7. Büchler M, Schmuki P, Böhni H (1998) J Electrochem Soc 145:609–614

    Article  Google Scholar 

  8. Sieber IV, Hildebrand H, Virtanen S, Schmuki P (2006) Corros Sci 48:3472–3488

    Article  CAS  Google Scholar 

  9. Díez-Pérez I, Gorostiza P, Sanz F, Müller C (2001) J Electrochem Soc 148:B307–B313

    Article  Google Scholar 

  10. Díez-Pérez I, Sanz F, Gorostiza P (2006) Curr Opin Solid State Mater Sci 10:144–152

    Article  Google Scholar 

  11. Liu J, Macdonald DD (2001) J Electrochem Soc 148:B425–B430

    Article  CAS  Google Scholar 

  12. Macdonald DD (1999) Pure Appl Chem 71:951–978

    Article  CAS  Google Scholar 

  13. Schmuki P (2002) J Solid State Electrochem 6:145–164

    Article  CAS  Google Scholar 

  14. Schultze JW, Lohrengel MM (2000) Electrochim Acta 45:2499–2513

    Article  CAS  Google Scholar 

  15. Virtanen S, Schmuki P, Isaacs HS (2002) Electrochim Acta 47:3117–3125

    Article  CAS  Google Scholar 

  16. Bardwell JA, MacDougall B, Graham MJ (1988) J Electrochem Soc 135:413–418

    Article  CAS  Google Scholar 

  17. Davenport AJ, Bardwell JA, Vitus CM (1995) J Electrochem Soc 142:721–724

    Article  CAS  Google Scholar 

  18. Schmuki P, Virtanen S, Davenport AJ, Vitus CM (1996) J Electrochem Soc 143:574–582

    Article  CAS  Google Scholar 

  19. Li WS, Cai SQ, Luo JL (2004) J Electrochem Soc 151:B220–B226

    Article  CAS  Google Scholar 

  20. Deng H, Ishikawa I, Yoneya M, Nanjo H (2004) J Phys Chem B 108:9138–9146

    Article  CAS  Google Scholar 

  21. Deng H, Nanjo H, Qian P, Xia Z, Ishikawa I (2006) Electrochim Acta 52:187–193

    Article  CAS  Google Scholar 

  22. Kowk RMW (2000) XPSPEAK Version 4.1 XPS Peak Fitting Program. Available at http://www.uksaf.org/software.html. Accessed 30 Sept 2010

  23. Grosvenor AP, Kobe BA, Biesinger MC, McIntyre NS (2004) Surf Interface Anal 36:1564–1574

    Article  CAS  Google Scholar 

  24. Mills P, Sullivan JL (1983) J Phys D 16:723–732

    Article  CAS  Google Scholar 

  25. Yamashita T, Hayes P (2008) Appl Surf Sci 254:2441–2449

    Article  CAS  Google Scholar 

  26. Aronniemi M, Sainio J, Lahtinen J (2005) Surf Sci 578:108–123

    Article  CAS  Google Scholar 

  27. McCaffery E, Bernett MK, Murday JS (1988) Corros Sci 28:559–576

    Article  Google Scholar 

  28. Temesghen W, Sherwood PMA (2002) Anal Bioanal Chem 373:601–608

    Article  CAS  Google Scholar 

  29. Sato N, Cohen M (1964) J Electrochem Soc 111:512–519

    Article  CAS  Google Scholar 

  30. Strohmeier BR (1990) Surf Interface Anal 15:51–56

    Article  CAS  Google Scholar 

  31. Frateur I, Carnot A, Zanna S, Marcus P (2006) Appl Surf Sci 252:2757–2769

    Article  CAS  Google Scholar 

  32. Martini EMA, Muller IL (2000) Corros Sci 42:443–454

    Article  CAS  Google Scholar 

  33. Hamadou L, Kadr A, Benbrahim N (2005) Appl Surf Sci 252:1510–1519

    Article  CAS  Google Scholar 

  34. Alves VA, Brett CMA (2002) Electrochim Acta 47:2081–2091

    Article  CAS  Google Scholar 

  35. MacDonald JR (1987) Impedance Spectroscopy. Wiley, New York

    Google Scholar 

  36. Chao CY, Lin LF, Macdonald DD (1982) J Electrochem Soc 129:1874–1879

    Article  CAS  Google Scholar 

  37. Jovancicevic V, Kainthla RC, Tang Z, Yang B, Bockris JO’M (1987) Langmuir 3:388–395

    Article  CAS  Google Scholar 

  38. Rubim JC (1993) J Electrochem Soc 140:1601–1606

    Article  CAS  Google Scholar 

  39. Amaral ST, Martini EMA, Muller IL (2001) Corros Sci 43:853–879

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. P. Bartolo Perez and Mr. W. Cauich of CINVESTAV-Mérida for helpful discussions and technical assistance in the XPS measurements. It is also acknowledged the technical assistance of Ms. Marbella Echeverría. Finally, L.A. Toledo Matos is thankful to CONACyT-Mexico for providing a scholarship for his doctoral studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximo Antonio Pech-Canul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toledo-Matos, L.A., Pech-Canul, M.A. Evolution of an iron passive film in a borate buffer solution (pH 8.4). J Solid State Electrochem 15, 1927–1934 (2011). https://doi.org/10.1007/s10008-010-1213-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1213-7

Keywords

Navigation