Skip to main content
Log in

Effective charge propagation and storage in hybrid films of tungsten oxide and poly(3,4-ethylenedioxythiophene)

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Hybrid (composite) electroactive films consisting of such an organic conducting polymer as poly(3,4-ethylenedioxythiophene), PEDOT, and such a polynuclear inorganic compound as amorphous tungsten oxide, WO3/H x WO3 were fabricated on carbon electrodes through electrodeposition by voltammetric potential in acid solution containing EDOT monomer and sodium tungstate. Electrostatic interactions between the negatively charged tungstic units (existing within WO3) and the oxidized positively charged conductive polymer (oxidized PEDOT) sites create a robust hybrid structure which cannot be considered as a simple mixture of the organic and inorganic components. It is apparent from scanning electron microscopy that hybrid structures are granular but fairly dense. Because PEDOT and mixed-valence tungsten oxides are electronically conducting, the resulting hybrid films are capable of fast propagation. The reversible and fast redox reactions of tungsten oxide component lie in the potential range where PEDOT matrix is conductive. Furthermore, the hybrid films exhibit good mediating capabilities towards electron transfers between model redox couples such as cationic iron(III,II) and anionic hexacyanoferrate(III,II). Since the films accumulate effectively charge and show high current densities at electrochemical interfaces, they could be of importance to electrocatalysis and to construction of redox capacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Rubinson JF, Mark HB (1999) In: Wieckowski A (ed) Interfacial electrochemistry, Ch. 37, conducting polymer films as electrodes. Marcel Dekker, New York

    Google Scholar 

  2. Ryu KS, Lee YG, Hong YS, Park YJ, Wu X, Kim KM, Kang MG, Park NG, Chang SH (2004) Electrochim Acta 50:843

    Article  CAS  Google Scholar 

  3. Prakash R, Srivastava RC, Pandey PC (2002) J Solid State Electrochem 6:203

    Article  CAS  Google Scholar 

  4. Kim YK, Park HB, Lee YM (2004) J Membr Sci 243:9

    Article  CAS  Google Scholar 

  5. Robeson LM (1999) Curr Opin Solid State Mater Sci 4:549

    Article  CAS  Google Scholar 

  6. Saxena V, Malhotra BD (2003) Current Appl Phys 3:293

    Article  Google Scholar 

  7. Granström M, Berggren M, Inganäs O, Hjertberg T, Wennerström O, Andersson MR (1997) Synth Met 85:1193

    Article  Google Scholar 

  8. Vera R, Schrebler R, Cury P, Del Rio R, Romero H (2007) J Appl Electrochem 37:519

    Article  CAS  Google Scholar 

  9. Sapp SA, Sotzing GA, Reddinger JL, Reynolds JR (1996) Adv Mater 8:808

    Article  CAS  Google Scholar 

  10. Lin TH, Ho KC (2006) Sol Energy Mater 90:506

    Article  CAS  Google Scholar 

  11. Inzelt G (1994) In: Bard AJ (ed) Electroanalytical chemistry, vol 18. Marcel Dekker, New York

    Google Scholar 

  12. Jonas F, Schrader L (1991) Synth Met 41:831

    Article  CAS  Google Scholar 

  13. Granstrom M, Berggren M, Inganas O (1995) Science 267:1479

    Article  CAS  Google Scholar 

  14. Dietrich M, Heinze J, Heywang G, Jonas F (1994) J Electroanal Chem 369:87

    Article  CAS  Google Scholar 

  15. Mastragostino M, Arbizzani C, Bongini A, Barbarella G, Zambianchi M (1992) Electrochim Acta 38:135

    Article  Google Scholar 

  16. Kvarnstrom C, Neugebauer H, Blomquist S, Ahonen HJ, Kankare J, Ivaska A (1999) Electrochim Acta 44:2739

    Article  CAS  Google Scholar 

  17. Heywang G, Jonas F (1992) Adv Mater 4:116

    Article  CAS  Google Scholar 

  18. Panero S, Passerini S, Scrosati B (1993) Mol Cryst Liq Cryst 229:97

    Article  CAS  Google Scholar 

  19. Lampert CM (1984) Sol Energy Mat 11:1

    Article  CAS  Google Scholar 

  20. Pei Q, Zuccarello G, Heinze J, Heywang G, Jonas F (1994) J Electroanal Chem 369:87

    Article  Google Scholar 

  21. Adamczyk L, Kulesza PJ, Miecznikowski K, Palys B, Chojak M, Krawczyk D (2005) J Electrochem Soc 152:98

    Article  CAS  Google Scholar 

  22. Kulesza PJ, Faulkner LR (1988) J Am Chem Soc 110:4905

    Article  CAS  Google Scholar 

  23. Kulesza PJ, Faulkner LR (1988) J Electroanal Chem 248:305

    Article  CAS  Google Scholar 

  24. Santato C, Odziemkowski M, Ulmann M, Augustynski J (2001) J Am Chem Soc 123:10639

    Article  CAS  Google Scholar 

  25. Solis JL, Saukko S, Kkish L, Granqvist CG, Lantto V (2001) Thin Solid Films 391:255

    Article  CAS  Google Scholar 

  26. Sayama K, Mukasa K, Abe R, Abe Y, Arakawa H (2001) Chem Commun 23:2416

    Article  CAS  Google Scholar 

  27. Kulesza PJ, Grzybowska B, Malik MA, Galkowski M (1997) J Electrochem Soc 110:1911

    Article  Google Scholar 

  28. Rolad JF, Anson FC (1992) J Electroanal Chem 336:245

    Article  Google Scholar 

  29. Gómez-Romero P, Chojak M, Cuentas-Gallegos K, Asensio JA, Kulesza P, Casañ-Pastor N, Lira-Cantú M (2003) Electrochem Commun 5:149

    Article  CAS  Google Scholar 

  30. Kotz R, Carlen M (2000) Electrochim Acta 45:2483

    Article  CAS  Google Scholar 

  31. Khomenko V, Raymundo-Piñero E, Frackowiak E, Béguin F (2006) Appl Phys A 82:567

    Article  CAS  Google Scholar 

  32. Frackowiak E, Khomenko V, Jurewicz K, Béguin F (2006) J Power Sources 153:413

    Article  CAS  Google Scholar 

  33. Kulesza PJ, Malik MA (1999) In: Wieckowski A (ed) Interfecial electrochemistry, Ch. 23, solid-state voltametry. Marcel Dekker, New York

    Google Scholar 

  34. Malik MA, Kulesza PJ, Marassi R, Nobili F, Miecznikowski K, Zapomni S (2004) Electrochim Acta 49:4253

    Article  CAS  Google Scholar 

  35. Eickhorst T, Seubert A (2004) J Chromatogr A 1050:103

    CAS  Google Scholar 

  36. Wang P, Wang X, Zhu G (2000) Electroanalysis 12:1493

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by Ministry of Science and Higher Education under grant N N204 031235. Lidia Adamczyk appreciates partial support from the project N N507 461633. Technical assistance of Dr. Rafal Jurczakowski (University of Warsaw) with SEM measurements is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pawel J. Kulesza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szymanska, D., Rutkowska, I.A., Adamczyk, L. et al. Effective charge propagation and storage in hybrid films of tungsten oxide and poly(3,4-ethylenedioxythiophene). J Solid State Electrochem 14, 2049–2056 (2010). https://doi.org/10.1007/s10008-010-1081-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1081-1

Keywords

Navigation