Skip to main content
Log in

Direct electron transfer of cytochrome C and its electrocatalytic properties on multiwalled carbon nanotubes/ciprofloxacin films

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this study, stable and homogenous thin films of multiwalled carbon nanotubes (MWCNTs) were obtained on conducting surface using ciprofloxacin (CF, fluoroquinolone antibiotic) as an effective-dispersing agent. Further, MWCNTs/CF film modified electrodes (glassy carbon and indium tin oxide-coated glass electrode) are used successfully to study the direct electrochemistry of proteins. Here, cytochrome C (Cyt-C) was used as a model protein for investigation. A MWCNTs/CF film modified electrode was used as a biocompatible material for immobilization of Cyt-C from a neutral buffer solution (pH 7.2) using cyclic voltammetry (CV). Interestingly, Cyt-C retained its native state on the MWCNTs/CF film. The Cyt-C adsorbed MWCNTs/CF film was characterized by scanning electron microscopy (SEM), UV–visible spectrophotometry (UV-vis) and CV. SEM images showed the evidence for the adsorption of Cyt-C on the MWCNTs/CF film, and UV–vis spectrum confirmed that Cyt-C was in its native state on MWCNTs/CF film. Using CV, it was found that the electrochemical signal of Cyt-C was highly stable in the neutral buffer solution and its redox peak potential was pH dependent. The formal potential (−0.27 V) and electron transfer rate constant (13 ± 1 s−1) were calculated for Cyt-C on MWCNTs/CF film modified electrode. A potential application of the Cyt-C/MWCNTs/CF electrode as a biosensor to monitor H2O2 has been investigated. The steady-state current response increases linearly with H2O2 concentration from 2 × 10−6 to 7.8 × 10−5 M. The detection limit for determination of H2O2 has been found to be 1.0 × 10−6 M (S/N = 3). Thus, Cyt-C/MWCNTs/CF film modified electrode can be used as a biosensing material for sensor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Balasubramanian K, Burghard M (2005) Small 1:180

    Article  CAS  Google Scholar 

  2. Dai H (2002) Acc Chem Res 35:1035

    Article  CAS  Google Scholar 

  3. Trojanowicz M, Szewczynska M (2005) TrAC-Trend Anal Chem 24:92

    Article  CAS  Google Scholar 

  4. Wang J (2005) Electroanalysis 17:7

    Article  CAS  Google Scholar 

  5. Banks CE, Compton RG (2006) Analyst 131:15

    Article  CAS  Google Scholar 

  6. Wang J (2005) Analyst 130:421

    Article  CAS  Google Scholar 

  7. Agüí L, Yáñez-Sedeño P, Pingarrón JM (2008) Anal Chim Acta 622:11

    Article  CAS  Google Scholar 

  8. Kumar SA, Chen SM (2008) Sensors 8:739

    Article  CAS  Google Scholar 

  9. Xin X, Xu G, Zhao T, Zhu Y, Shi X, Gong H et al (2008) J Phys Chem C 112:16377

    Article  CAS  Google Scholar 

  10. Rubianes MD, Rivas GA (2007) Electrochem Commun 9:480

    Article  CAS  Google Scholar 

  11. Sawada H, Naitoh N, Kasai R, Suzuki M (2008) J Mater Sci 43:1080

    Article  CAS  Google Scholar 

  12. Zou J, Liu L, Chen H, Khondaker SI, McCullough RD, Huo Q et al (2008) Adv Mater 20:2055

    Article  CAS  Google Scholar 

  13. Psomas G (2008) J Inorg Biochem 102:1798

    Article  CAS  Google Scholar 

  14. Michalska K, Pajchel G, Tyski S (2004) J Chromatogra A 1051:267

    Article  CAS  Google Scholar 

  15. Kumar SA, Wang SF (2009) Mater Lett 63:1830

    Article  CAS  Google Scholar 

  16. Bertini I, Cavallaro G, Rosato A (2006) Chem Rev 106:90

    Article  CAS  Google Scholar 

  17. Zhou J, Lu X, Hu J, Li J (2007) Chem Eur J 13:2847

    Article  CAS  Google Scholar 

  18. Zhang L (2008) Biosens Bioelectron 23:1610

    Article  CAS  Google Scholar 

  19. Laviron E (1979) J Electroanal Chem 101:19

    Article  CAS  Google Scholar 

  20. Zhang Y, Zheng J (2008) Electrochim Acta 54:749

    Article  CAS  Google Scholar 

  21. Zhang L, Jiang X, Wang E, Dong S (2005) Biosens Bioelectron 21:337

    Article  CAS  Google Scholar 

  22. Yin ZZ, Zhao GC, Wei XW (2005) Chem Lett 34:992

    Article  CAS  Google Scholar 

  23. Xiang C, Zou Y, Sun LX, Xu F (2007) Talanta 74:206

    Article  CAS  Google Scholar 

  24. Chen Y, Yang XJ, Guo LR, Jin B, Xia XH, Zheng LM (2009) Talanta 78:248

    Article  CAS  Google Scholar 

  25. Xu JS, Zhao GC (2008) Electroanalysis 20:1200

    Article  CAS  Google Scholar 

  26. Kumar SA, Chen SM (2007) Biosens Bioelectron 22:3042

    Article  CAS  Google Scholar 

  27. Trivedi P, Vasudevan D (2007) Environ Sci Technol 41:3153

    Article  CAS  Google Scholar 

  28. Wang L, Wang E (2004) Electrochem Commun 6:49

    Article  CAS  Google Scholar 

  29. Kamin RA, Wilson GS (1980) Anal Chem 52:1198

    Article  CAS  Google Scholar 

  30. Wang BQ, Dong SJ (2000) Talanta 51:565

    Article  CAS  Google Scholar 

  31. Zhao GC, Yin ZZ, Zhang L, Wei XW (2005) Electrochem Commun 7:256

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sea-Fue Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, S.A., Wang, SF., Yeh, CT. et al. Direct electron transfer of cytochrome C and its electrocatalytic properties on multiwalled carbon nanotubes/ciprofloxacin films. J Solid State Electrochem 14, 2129–2135 (2010). https://doi.org/10.1007/s10008-010-1048-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1048-2

Keywords

Navigation