Skip to main content
Log in

Cytochrome c/Multi-walled Carbon Nanotubes Modified Glassy Carbon Electrode for the Detection of Streptomycin in Pharmaceutical Samples

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A novel electrochemical glassy carbon electrode modified with a multi-walled carbon nanotube, cytochrome c (Cyt c) and zinc oxide nanoparticles (ZnONPs) was fabricated to increase the sensitivity of electrode for the detection of streptomycin (STN) in certain pharmaceutical samples. Cyclic voltammetry (CV) and differential pulse voltammetry techniques were used for an electrochemical characterization of the electrode. Furthermore, the electrochemical biosensor construction phases were examined by using X-ray diffraction (XRD), transmission electron microscopy (TEM) and Fourier-transform infrared spectroscopy (FTIR). Under the optimal experimental conditions, the electrode offers a high selectivity and sensitivity signaling in the co-existence method of STN with the linear concentration ranging from 0.02 to 2.2 μM. The detection limits (LOD) and limit of quantification (LOQ) were found to be 0.0028 and 0.0562 μM, respectively. The fabricated sensing electrode has good stability, reproducibility and sensitivity towards STN in the pharmaceutical samples. Preliminary determinations of binding sites within the specified grid box size, which covers both Cyt c and STN, were done by molecular docking analysis. Moreover, density functional theory (DFT) computations were performed to provide insightful information into the optimized geometry of STN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WHO, “The World Health Report 2000: Health Systems: Improving Performance”, 2000, World Health Organization.

    Google Scholar 

  2. R. Chokkareddy, N. Bhajanthri, G. G. Redhi, and D. G. Redhi, Curr. Anal. Chem., 2018, 14, 391.

    Article  CAS  Google Scholar 

  3. R. Chokkareddy, N. Bhajanthri, and G. Redhi, Biosensors, 2017, 7, 21.

    Article  PubMed  PubMed Central  Google Scholar 

  4. J. C. Palomino, S. C. Leão, and V. Ritacco, “Tuberculosis 2007: From Basic Science to Patient Care”, 2007, 1.

    Google Scholar 

  5. M. S. Vasava, M. N. Bhoi, S. K. Rathwa, M. A. Borad, S. G. Nair, and H. D. Patel, Indian J. Tuberc., 2017, 64, 252.

    Article  PubMed  Google Scholar 

  6. R. Chokkareddy, Doctoral Dissertation, 2018.

    Google Scholar 

  7. X. Que, B. Liu, L. Fu, J. Zhuang, G. Chen, and D. Tang, Electroanalysis, 2013, 25, 531.

    Article  CAS  Google Scholar 

  8. B. Chen, H. Zhang, B. Lin, J. Ge, and L. Qiu, J. AOAC Int., 2012, 95, 523.

    Article  CAS  PubMed  Google Scholar 

  9. V. Ghoulipour, M. Shokri, and S. Waqif-Husain, J. Planar Chromatogr.—Mod. TLC, 2011, 24, 520.

    Article  CAS  Google Scholar 

  10. H. Abbasi and K.-E. Hellenäs, Analyst, 1998, 123, 2725.

    Article  CAS  PubMed  Google Scholar 

  11. M. Preu and M. Petz, J. Chromatogr. A, 1999, 840, 81.

    Article  CAS  Google Scholar 

  12. J. Sun, J. Ge, W. Liu, Z. Fan, H. Zhang, and P. Wang, Chem. Commun., 2011, 47, 9888.

    Article  CAS  Google Scholar 

  13. S. M. Taghdisi, N. M. Danesh, M. A. Nameghi, M. Ramezani, and K. Abnous, Food Chem., 2016, 203, 145.

    Article  CAS  PubMed  Google Scholar 

  14. V. Soheili, S. M. Taghdisi, M. H. Khayyat, B. S. F. Bazzaz, M. Ramezani, and K. Abnous, Microchim. Acta, 2016, 183, 1687.

    Article  CAS  Google Scholar 

  15. G. K. Mishra, A. Sharma, and S. Bhand, Biosens. Bioelectron., 2015, 67, 532.

    Article  CAS  PubMed  Google Scholar 

  16. A. S. Emrani, N. M. Danesh, P. Lavaee, M. Ramezani, K. Abnous, and S. M. Taghdisi, Food Chem., 2016, 190, 115.

    Article  CAS  PubMed  Google Scholar 

  17. C. Rao and G. Reddi, TrAC Trends Anal. Chem., 2000, 19, 565.

    Article  CAS  Google Scholar 

  18. S. Akbarzadeh, H. Khajesharifi, and M. Thompson, Biosensors, 2020, 10, 23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. M. Roushani and K. Ghanbari, Microchim. Acta, 2019, 186, 1.

    Article  CAS  Google Scholar 

  20. K. Zarei and M. Ghorbani, Electrochim. Acta, 2019, 299, 330.

    Article  CAS  Google Scholar 

  21. K. Ghanbari and M. Roushani, Bioelectrochemistry, 2018, 120, 43.

    Article  CAS  PubMed  Google Scholar 

  22. R. Chokkareddy, N. K. Bhajanthri, and G. G. Redhi, Int. J. Electrochem. Sci., 2017, 12, 9190.

    Article  CAS  Google Scholar 

  23. R. Chokkareddy, N. K. Bhajanthri, and G. G. Redhi, Indian J. Chem., Sect. A, 2018, 57, 887.

    Google Scholar 

  24. N. K. Bhajanthri, V. K. Arumugam, R. Chokkareddy, and G. G. Redhi, L Mol. Liq., 2016, 222, 370.

    Article  CAS  Google Scholar 

  25. R. Chokkareddy, G. G. Redhi, and T. Karthick, Heliyon, 2019, 5, e01457.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Y. Hatefi, Annu. Rev. Biochem., 1985, 54, 1015.

    Article  CAS  PubMed  Google Scholar 

  27. W. Koppenol and J. Butler, Isr. J. Chem., 1984, 24, 11.

    Article  CAS  Google Scholar 

  28. N. S. Rao and M. V. B. Rao, Am. J. Mater. Sci., 2015, 5, 66.

    Google Scholar 

  29. J. C. Kilele, R. Chokkareddy, N. Rono, and G. G. Redhi, J. Taiwan Inst. Chem. Eng., 2020, 111, 228.

    Article  CAS  Google Scholar 

  30. M. AbdElhady, Int. L Carbohydr. Chem., 2012, 2012, 1.

    Article  Google Scholar 

  31. P. Taunk, R. Das, D. Bisen, and R. Kumar Tamrakar, J. Radiat. Res. Appl. Sci., 2015, 8, 433.

    Google Scholar 

  32. M. Mohamed, W. Salleh, J. Jaafar, and A. Ismail, J. Sol-Gel Sci. Technol., 2015, 74, 513.

    Article  CAS  Google Scholar 

  33. M. I. Khalil, M. M. Al-Qunaibit, A. M. Al-Zahem, and J. P. Labis, Arab. J. Chem., 2014, 7, 1178.

    Article  CAS  Google Scholar 

  34. A. Becheri, M. Dürr, P. Lo Nostro, and P. Baglioni, J. Nanopart. Res., 2008, 10, 679.

    Article  CAS  Google Scholar 

  35. A. K. Zak, W. A. Majid, M. Darroudi, and R. Yousefi, Mater. Lett., 2011, 65, 70.

    Article  CAS  Google Scholar 

  36. S. Talam, S. R. Karumuri, and N. Gunnam, ISRN Nanotechnology, 2012, 2012, 1.

    Article  Google Scholar 

  37. B. Liu, D. Tang, B. Zhang, X. Que, H. Yang, and G. Chen, Biosens. Bioelectron., 2013, 41, 551.

    Article  CAS  PubMed  Google Scholar 

  38. J. I. Gowda and S. T. Nandibewoor, Asian J. Pharm. Sci., 2014, 9, 42.

    Article  Google Scholar 

  39. X. Shen, D. Liu, C. Zhu, Y. Li, Y. Liu, and T. You, Electrochem. Commun., 2020, 110, 106637.

    Article  CAS  Google Scholar 

  40. J. D. Patterson, B. D. Debaryshe, and E. Ramsey, J. Am. Psychol., 1989, 44, 329.

    Article  CAS  Google Scholar 

  41. J. L. Calais, Int. J. Quantum Chem., 1993, 47, 101.

    Article  Google Scholar 

  42. T. Karthick and P. Tandon, J. Mol. Model., 2016, 22, 142.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Durban University of Technology, Durban, South Africa for financial assistance. K. T. acknowledges SASTRA Deemed University, the management of SASTRA Deemed University, Thanjavur, Tamil Nadu, India for providing necessary infrastructure and computational facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajasekhar Chokkareddy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chokkareddy, R., Redhi, G.G. & Thangavel, K. Cytochrome c/Multi-walled Carbon Nanotubes Modified Glassy Carbon Electrode for the Detection of Streptomycin in Pharmaceutical Samples. ANAL. SCI. 37, 1265–1273 (2021). https://doi.org/10.2116/analsci.20P293

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.20P293

Keywords

Navigation