Skip to main content
Log in

Immobilization of cytochrome c on polyaniline/polypyrrole/carboxylated multi-walled carbon nanotube/glassy carbon electrode: biosensor fabrication

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A modified electrode PAN/PPY/cMWCNTs composed of polyaniline/polypyrrole (PAN/PPY) bilayer conducting polymer film, carboxylated multi-walled carbon nanotubes (cMWCNTs), and glassy carbon electrode (GCE) was fabricated and examined for their potential applicability in the third-generation amperometric biosensor. Cytochrome c (Cyt c) was immobilized on the surface of modified PAN/PPY/cMWCNTs/GCE and its chemical and electrochemical properties were investigated by Fourier transform infrared spectroscopy, electrochemical impedance spectroscopy, cyclic voltammetry, and amperometry techniques. The modified Cyt c/PAN/PPY/cMWCNTs/GCE exhibited well-defined redox peaks with the formal potential and peak-to-peak separation -0.338 V and 0.068 V (vs. Ag/AgCl, 3 M KCl), respectively. The surface coverage concentration of Cyt c was estimated to be 8.0 × 10−9 mol cm−2. The application of the prepared Cyt c/PAN/PPY/cMWCNTs/GCE for detection of hydrogen peroxide (H2O2) showed a sensitivity of 101.6 μA mM−1 with a detection limit of 0.1 μM in a linear response range of 1 to 370 μM. According to the obtained results, the proposed PAN/PPY/cMWCNTs nanocomposite could act as a charge promoter to facilitate direct electron transfer between immobilized Cyt c and GCE, offering a high potential for application in third-generation amperometric biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Freire RS, Pessoa CA, Mello LD, Kubota LT (2003) Direct electron transfer: an approach for electrochemical biosensors with higher selectivity and sensitivity. J Braz Chem Soc 14(2):230–243

    Article  CAS  Google Scholar 

  2. Yogeswaran U, Chen S (2008) A review on the electrochemical sensors and biosensors composed of nanowires as sensing material. Sensors 8(1):290–313

    Article  CAS  PubMed  Google Scholar 

  3. Hayat A, Catanante G, Marty JL (2014) Current trends in nanomaterial-based amperometric biosensors. Sensors 14(12):23439–23461

    Article  PubMed  Google Scholar 

  4. Bhatia R, Suchand Sangeeth CS, Prasad V, Menon R (2011) Preparation and characterization of multiwall carbon nanotube/polypyrrole coaxial fibrils. Phys B 406(9):1727–1732

    Article  CAS  Google Scholar 

  5. Sahoo NG, Rana S, Cho JW, Li L, Chan SH (2010) Progress in polymer science polymer nanocomposites based on functionalized carbon nanotubes. Prog Polym Sci 35(7):837–867

    Article  CAS  Google Scholar 

  6. Yin Y, Wu P, Lü Y, Du P (2007) Immobilization and direct electrochemistry of cytochrome c at a single-walled carbon nanotube-modified electrode. J Solid State Electrochem 11:390–397

    Article  CAS  Google Scholar 

  7. Feng W, Ji P (2011) Enzymes immobilized on carbon nanotubes. Biotechnol Adv 29(6):889–895

    Article  CAS  PubMed  Google Scholar 

  8. Haldorai Y, Hwang S-K, Gopalan A-I, Huh YS, Han Y-K, Voit W, Sai-Anand G, Lee K-P (2016) Direct electrochemistry of cytochrome c immobilized on titanium nitride/multi-walled carbon nanotube composite for amperometric nitrite biosensor. Biosens Bioelectron 79:543–552

    Article  CAS  PubMed  Google Scholar 

  9. Eguílaz M, Gutiérrez A, Rivas G (2016) Non-covalent functionalization of multi-walled carbon nanotubes with cytochrome c: enhanced direct electron transfer and analytical applications. Sensors Actuators B Chem 225:74–80

    Article  CAS  Google Scholar 

  10. Gao Z, Bobacka J, Ivaska A (1994) Electrochemical study of bilayer conducting polymers: polypyrrole/polyaniline system. J Electroanal Chem 364(1-2):127–133

    Article  CAS  Google Scholar 

  11. Bahrami N, Danaee I (2010) Study of the anticorrosive properties of polypyrrole/polyaniline bilayer via electrochemical techniques. Prog Org Coat 68(3):214–218

    Article  CAS  Google Scholar 

  12. Zhang W, Li G (2004) Third-generation biosensors based on the direct electron transfer of proteins. Anal Sci 20(4):603–609

    Article  CAS  PubMed  Google Scholar 

  13. Hüttemann M, Pecina P, Rainbolt M, Sanderson TH, Kagan VE, Samavati L, Doan JW, Lee I (2011) The multiple functions of cytochrome c and their regulation in life and death decisions of the mammalian cell: from respiration to apoptosis. Mitochondrion 11(3):369–381

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Philip LY (2016) The membranes of cells, 3rd edn. Academic Press

  15. Matsuura K, Canfield K, Feng W, Kurokawa M (2016) Metabolic regulation of apoptosis in cancer. Int Rev Cell Mol Biol 327:43–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dai Z, Liu S, Ju H (2004) Direct electron transfer of cytochrome c immobilized on a NaY zeolite matrix and its application in biosensing. Electrochim Acta 49(13):2139–2144

    Article  CAS  Google Scholar 

  17. Chen X, Long H, Wu W, Yang Z (2009) Direct electrochemical behavior of cytochrome c on sodium dodecyl sulfate modified electrode and its application to nitric oxide biosensor. Thin Solid Films 517(8):2787–2791

    Article  CAS  Google Scholar 

  18. Xu J, Zhao G (2008) Direct electrochemistry of cytochrome c on a silica sol-gel film modified electrode. Electroanalysis 20(11):1200–1203

    Article  CAS  Google Scholar 

  19. Zhao G-C, Yin Z-Z, Zhang L, Wei X-W (2005) Direct electrochemistry of cytochrome c on a multi-walled carbon nanotubes modified electrode and its electrocatalytic activity for the reduction of H2O2. Electrochem Commun 7(3):256–260

    Article  CAS  Google Scholar 

  20. Zhao H, Du Q, Li Z, Yang Q, Sciences S (2012) Mechanisms for the direct electron transfer of cytochrome c induced by multi-walled carbon nanotubes. Sensors 12(8):10450–10462

    Article  CAS  PubMed  Google Scholar 

  21. Rahimi P, Ghourchian H, Rafiee-Pour HA (2011) Superoxide radical biosensor based on a nano-composite containing cytochrome c. Analyst 136(18):3803–3888

    Article  CAS  PubMed  Google Scholar 

  22. Zhang L, Zhang J, Zhang C (2009) Electrochemical synthesis of polyaniline nano-network on a -alanine functionalized glassy carbon electrode and its application for the direct electrochemistry of horse heart cytochrome c. Biosens Bioelectron 24(7):2085–2090

    Article  CAS  PubMed  Google Scholar 

  23. Eguílaz M, Agüí L, Yáñez-Sedeño P, Pingarrón JM (2010) A biosensor based on cytochrome c immobilization on a poly-3-methylthiophene/multi-walled carbon nanotubes hybrid-modified electrode. Application to the electrochemical determination of nitrite. J Electroanal Chem 644:30–35

    Article  CAS  Google Scholar 

  24. Tanne J, Dietzel B, Scheller FW, Bier F (2014) Nanohybrid materials consisting of poly [(3-aminobenzoic)] multiwalled carbon nanotubes for immobilization of redox active cytochrome c. Electroanalysis 26(4):732–738

    Article  CAS  Google Scholar 

  25. Yang Y, Unnikrishnan B, Chen S (2011) Immobilization of cytochrome c on multi-walled carbon nanotube-poly (vinysulfonic acid) composite film and its application for amperometric determination of H2O2. Int J Electrochem Sci 6:3743–3753

    CAS  Google Scholar 

  26. Liu D, Guo Q, Zhang X, Hou H, You T (2015) PdCo alloy nanoparticle – embedded carbon nanofiber for ultrasensitive nonenzymatic detection of hydrogen peroxide and nitrite. J Colloid Interface Sci 450:168–173

    Article  CAS  PubMed  Google Scholar 

  27. Lopez-Lazaro M (2007) Dual role of hydrogen peroxide in cancer: possible relevance to cancer chemoprevention and therapy. Cancer Lett 252(1):1–8

    Article  CAS  PubMed  Google Scholar 

  28. Szatrowski TP, Nathan CF (1991) Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res 51:794–799

    CAS  PubMed  Google Scholar 

  29. Ates M, Sarac AS (2009) Conducting polymer coated carbon surfaces and biosensor applications. Prog Org Coat 66(4):337–358

    Article  CAS  Google Scholar 

  30. Chen YS, Li Y, Wang HC, Yang MJ (2007) Gas sensitivity of a composite of multi-walled carbon nanotubes and polypyrrole prepared by vapor phase polymerization. Carbon 45(2):357–363

    Article  CAS  Google Scholar 

  31. Rawal R, Chawla S, Dahiya T (2011) Development of an amperometric sulfite biosensor based on a gold nanoparticles/chitosan/multiwalled carbon nanotubes/polyaniline-modified gold electrode. Anal Bioanal Chem 401(8):2599–2608

    Article  CAS  PubMed  Google Scholar 

  32. Solanki PR, Singh S, Prabhakar N, Pandey MK, Malhotra BD (2007) Application of conducting poly (aniline- co -pyrrole) film to cholesterol biosensor. J Appl Polym Sci 105(6):3211–3219

    Article  CAS  Google Scholar 

  33. Yadav S, Devi R, Kumari S, Yadav S, Pundir CS (2011) An amperometric oxalate biosensor based on sorghum oxalate oxidase bound carboxylated multiwalled carbon nanotubes-polyaniline composite film. J Biotechnol 151(2):212–217

    Article  CAS  PubMed  Google Scholar 

  34. Canobre SC, Almeida DAL, Fonseca CP, Neves S (2009) Synthesis and characterization of hybrid composites based on carbon nanotubes. Electrochim Acta 54(26):6383–6388

    Article  CAS  Google Scholar 

  35. Liu S-N, Yin Y-J, Cai C-X (2007) Immobilization and characterization of glucose oxidase on single-walled carbon nanotubes and its application to sensing glucose. Chin J Chem 25(4):439–447

    Article  CAS  Google Scholar 

  36. Dhand C, Arya SK, Datta M, Malhotra BD (2008) Polyaniline-carbon nanotube composite film for cholesterol biosensor. Anal Biochem 383(2):194–199

    Article  CAS  PubMed  Google Scholar 

  37. Wang J (2006) Analytical electrochemistry, 3rd edn. Wiley–VCH, New York

    Book  Google Scholar 

  38. Karimi S, Ghourchian H, Rahimi P, Rafiee-Pour H-A (2012) A nanocomposite based biosensor for cholesterol determination. Anal Methods 4(10):3225–3231

    Article  CAS  Google Scholar 

  39. Laviron E (1979) Use of linear potential sweep voltammetry and of ac voltammetry for the study of the surface electrochemical reaction of strongly adsorbed systems and of redox modified electrodes. J Electroanal Chem 100(1-2):263–270

    Article  CAS  Google Scholar 

  40. Sheng Q, Zheng J, Shang-guan X, Lin W, Li Y, Liu R (2010) Direct electrochemistry and electrocatalysis of heme-proteins immobilized in porous carbon nanofiber/room-temperature ionic liquid composite film. Electrochim Acta 55(9):3185–3191

    Article  CAS  Google Scholar 

  41. Zhang L (2008) Direct electrochemistry of cytochrome c at ordered macroporous active carbon electrode. Biosens Bioelectron 23(11):1610–1615

    Article  CAS  PubMed  Google Scholar 

  42. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101(1):19–28

    Article  CAS  Google Scholar 

  43. Yagati AK, Lee T, Min J, Choi J (2012) Electrochemical performance of gold nanoparticle – cytochrome c hybrid interface for H2O2 detection. Colloids Surf B: Biointerfaces 92:161–167

    Article  CAS  PubMed  Google Scholar 

  44. Geng R, Zhao G, Liu M, Li M (2008) A sandwich structured SiO2/cytochrome c/SiO2 on a boron-doped diamond film electrode as an electrochemical nitrite biosensor. Biomaterials 29(18):2794–2801

    Article  CAS  PubMed  Google Scholar 

  45. Balamurugan A, Chen S (2008) Fabrication of cytochrome c -poly (5-amino-2-napthalenesulfonic acid) electrode by one step procedure and direct electrochemistry of cytochrome c. Biosens Bioelectron 24(4):976–980

    Article  CAS  Google Scholar 

  46. Xiang C, Zou Y, Qiu S, Sun L, Xu F, Zhou H (2013) Bienzymatic glucose biosensor based on direct electrochemistry of cytochrome c on gold nanoparticles/polyaniline nanospheres composite. Talanta 110:96–100

    Article  CAS  PubMed  Google Scholar 

  47. Zhu A, Tian Y, Liu H, Luo Y (2009) Nanoporous gold film encapsulating cytochrome c for the fabrication of a H2O2 biosensor. Biomaterials 30(18):3183–3188

    Article  CAS  PubMed  Google Scholar 

  48. Zhang N, Lv X, Ma W, Hu Y, Li F, Han D, Niu L (2013) Direct electron transfer of cytochrome c at mono-dispersed and negatively charged perylene – graphene matrix. Talanta 107:195–202

    Article  CAS  PubMed  Google Scholar 

  49. Zhao G, Lei Y, Zhang Y, Li H, Liu M (2008) Growth and favorable bioelectrocatalysis of multishaped nanocrystal au in vertically aligned TiO2 nanotubes for hemoprotein. J Phys Chem C 112(38):14786–14795

    Article  CAS  Google Scholar 

  50. Wang Y, Qian K, Guo K, Kong J (2011) Electrochemistry and biosensing activity of cytochrome c immobilized in macroporous materials. Microchim Acta 175(1-2):87–95

    Article  CAS  Google Scholar 

  51. Tang X, Liu Y, Hou H, You T (2010) Electrochemical determination of L-tryptophan, L-tyrosine and L-cysteine using electrospun carbon nanofibers modified electrode. Talanta 80(5):2182–2186

    Article  CAS  PubMed  Google Scholar 

  52. Tasviri M, Rafiee-Pour H-A, Ghourchian H, Gholami MR (2011) Amine functionalized TiO2–carbon nanotube composite: synthesis, characterization and application to glucose biosensing. Appl Nanosci 1(4):189–195

    Article  CAS  Google Scholar 

  53. Rafipour R, Kashanian S, Abasi Tarighat F (2014) Sensitive electrochemical biosensing of H2O2 based on cobalt nanoparticles synthesised in iron storage protein molecules, ferritin. IET Nanobiotechnol 8(4):196–200

    Article  PubMed  Google Scholar 

  54. Hsu C-L, Chang K-S, Kuo J-C (2008) Determination of hydrogen peroxide residues in aseptically packaged beverages using an amperometric sensor based on a palladium electrode. Food Control 19(3):223–230

    Article  CAS  Google Scholar 

  55. Song Y, Wan L, Cui K, Liu L, Zhang M, Liao J, Wang L, Li Z (2011) Direct electron transfer of cytochrome c and its biosensor based on poly (ferrocenylsilane)– DNA composite film. J Electroanal Chem 656:206–210

    Article  CAS  Google Scholar 

  56. Song Y, Wan L, Wang Y, Zhao S, Hou H, Wang L (2012) Electron transfer and electrocatalytics of cytochrome c and horseradish peroxidase on DNA modified electrode. Bioelectrochemistry 85:29–35

    Article  CAS  PubMed  Google Scholar 

  57. Suarez G, Santschi C, Martin OJF, Slaveykova VI, Sua G (2013) Biosensor based on chemically-designed anchorable cytochrome c for the detection of H2O2 released by aquatic cells. Biosens Bioelectron 42:385–390

    Article  CAS  PubMed  Google Scholar 

  58. Liu H, Tian Y, Deng Z (2007) Morphology-dependent electrochemistry and electrocatalytical activity of cytochrome c. Langmuir 2:9487–9494

    Article  CAS  Google Scholar 

  59. Zhu L, Wang K, Lu T, Xing W, Li J, Yang X (2008) The direct electrochemistry behavior of Cyt c on the modified glassy carbon electrode by SBA-15 with a high-redox potential. J Mol Catal B Enzym 55(1-2):93–98

    Article  CAS  Google Scholar 

Download references

Funding

This study received financial support from the University of Kashan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Mohsennia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghamiri, Z.S., Mohsennia, M. & Rafiee-Pour, HA. Immobilization of cytochrome c on polyaniline/polypyrrole/carboxylated multi-walled carbon nanotube/glassy carbon electrode: biosensor fabrication. J Solid State Electrochem 23, 2233–2242 (2019). https://doi.org/10.1007/s10008-019-04300-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04300-x

Keywords

Navigation