Skip to main content
Log in

Investigations on current transients in porous alumina films during re-anodizing using the electrochemical quartz crystal microbalance

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Current transients and mass variations in as-prepared and heat-treated anodic alumina films were measured during re-anodizing by means of voltammetry and electrochemical quartz crystal microbalance (EQCM), respectively. Aluminum electrodes (100 nm) on quartz crystals were prepared by thermal evaporation. Anodic alumina films were formed on the surface of Al electrodes in aqueous solutions of oxalic (0.3 M) and phosphoric (0.6 M) acid in the potentiostatic regime. The EQCM experiments did not detect an overshoot in the mass variation of the Al electrode during re-anodizing of heat-treated anodic alumina films. The observed current overshoot in transients proved the presence of electrons and electron holes injected from the contacts in the bulk of the oxide. This can be explained by the emergence of excess electrons in the barrier layer of the alumina films due to a change in the mobility of the electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Diggle JW, Downie TC, Goulding CW (1969) Chem Rev 69:365–405

    Article  CAS  Google Scholar 

  2. Patermarakis G (2009) J Electroanal Chem 635:39–50

    Article  CAS  Google Scholar 

  3. Patermarakis G, Moussoutzanis K, Chandrinos J (2001) J Solid State Electrochem 6:39–54

    Article  CAS  Google Scholar 

  4. Patermarakis G, Chandrinos J, Masavetas K (2007) J Solid State Electrochem 11:1191–1204

    Article  CAS  Google Scholar 

  5. Thompson GE, Xu Y, Skeldon P, Shimizu K, Han SH, Wood GC (1987) Phil Mag B55:651–667

    Google Scholar 

  6. Dignam MJ (1972) In: Diggle JW (ed) Oxides and oxide films 1. New York, Marcel Dekker

    Google Scholar 

  7. Bean CP, Fisher JC, Vermilyea DA (1956) Phys Rev 101:551–554

    Article  CAS  Google Scholar 

  8. Young L, Smith DJ (1979) J Electrochem Soc 126:765–768

    Article  CAS  Google Scholar 

  9. De Wit HJ, Wijenberg C, Crevecoeur C (1979) J Electrochem Soc 126:779–785

    Article  Google Scholar 

  10. Vrublevsky I, Jagminas A, Schreckenbach J, Goedel WA (2008) Solid State Sci 10:1605–1611

    Article  CAS  Google Scholar 

  11. Ikonopisov S (1977) Electrochim Acta 22:1077–1082

    Article  CAS  Google Scholar 

  12. Albella JM, Montero I, Martinez-Duart JM (1987) Electrochim Acta 32:255–258

    Article  CAS  Google Scholar 

  13. Patermarakis G, Karayianni H, Masavetas K, Chandrinos J (2009) J Solid State Electrochem 13:1831–1847

    Article  CAS  Google Scholar 

  14. Patermarakis G, Moussoutzanis K, Nikolopoulos N (1999) J Solid State Electrochem 3:193–204

    Article  CAS  Google Scholar 

  15. Patermarakis G (2006) J Solid State Electrochem 10:211–222

    Article  CAS  Google Scholar 

  16. Zhu XF, Li DD, Song Y, Xiao YH (2005) Matter Lett 59:3160–3163

    Article  CAS  Google Scholar 

  17. Shimizu K, Habazaki H, Skeldon P (2002) Electrochim Acta 47:1225–1228

    Article  CAS  Google Scholar 

  18. Zhuravlyova E, Iglesias-Rubianes L, Pakes A, Skeldon P, Thompson GE, Zhou X, Quance T, Graham MJ, Habazaki H, Shimizu K (2002) Corros Sci 44:2153–2159

    Article  CAS  Google Scholar 

  19. Lambert J, Guthmann C, Ortega C, Saint-Jean M (2002) Appl Phys 91:9161–9169

    Article  CAS  Google Scholar 

  20. Lyuksyutov SF, Paramonov PB, Dolog I, Ralich RM (2003) Nanotechnol 14:716–721

    Article  CAS  Google Scholar 

  21. Munoz Ramo D, Shluger AL, Gavartin JL, Bersuker G (2007) Phys Rev Lett 99:155504

    Google Scholar 

  22. Lohrengel MM (1993) Mater Sci Eng R11:243–294

    CAS  Google Scholar 

  23. Bund A, Schwitzgebel G (2000) Electrochim Acta 45:3703–3710

    Article  CAS  Google Scholar 

  24. Bund A, Schneider O, Dehnke V (2002) Phys Chem Chem Phys 4:3552–3554

    Article  CAS  Google Scholar 

  25. Bund A, Neudeck S (2004) J Phys Chem B108:17845–17850

    Google Scholar 

  26. Sauerbrey G (1959) Z Phys 155:206–222

    Article  CAS  Google Scholar 

  27. Kanazawa KK, Gordon JG II (1985) Anal Chim Acta 175:99–105

    Article  CAS  Google Scholar 

  28. Goubaidoulline I, Reuber J, Merz F, Johannsmann D (2005) J Appl Phys 98:014305

    Article  CAS  Google Scholar 

  29. Schoen P, Michalek R, Walder L (1999) Anal Chem 71:3305–3310

    Article  CAS  Google Scholar 

  30. Vrublevsky I, Jagminas A, Schreckenbach J, Goedel WA (2007) Electrochim Acta 53:300–304

    Article  CAS  Google Scholar 

  31. Vrublevsky I, Parkoun V, Schreckenbach J, Goedel WA (2006) Appl Surf Sci 252:5100–5108

    Article  CAS  Google Scholar 

  32. Bund A, Schneider M (2002) J Electrochem Soc 149:E331–E339

    Article  CAS  Google Scholar 

  33. Naoi K, Oura Y, Ue M (1997) Denki Kagaku 65:1066–1069

    CAS  Google Scholar 

  34. Young L (1961) Anodic oxide films. Academic, London

    Google Scholar 

  35. Shimizu K, Thompson GE, Wood GC (1981) Thin Solid Films 81:39–44

    Article  CAS  Google Scholar 

  36. Ikonopisov S, Andreeva L, Vodenicharov C (1970) Electrochim Acta 15:421–429

    Article  CAS  Google Scholar 

  37. Chao CY, Lin LF, Macdonald DD (1981) J Electrochem Soc 128:1187–1194

    Article  CAS  Google Scholar 

  38. Lin LF, Chao CY, Macdonald DD (1981) J Electrochem Soc 128:1194–1198

    Article  CAS  Google Scholar 

  39. Macdonald DD, Urquidi-Macdonald M (1990) J Electrochem Soc 137:2395–2402

    Article  CAS  Google Scholar 

  40. Maissel L (1970) In: Maissel L, Glang R (eds) Handbook of thin film technology. New York, McGraw-Hill

    Google Scholar 

  41. Belca I, Kasalica B (1999) Zekovic Lj, Jovanic B, Vasilic R. Electochim Acta 45:993–996

    Article  CAS  Google Scholar 

  42. Stojadinovic S, Tadic M, Belca I, Kasalica B, Zekovic LJ (2007) Electrochim Acta 52:7166–7170

    Article  CAS  Google Scholar 

  43. Stojadinovic S, Belca I, Kasalica B, Zekovic LJ, Tadic M (2006) Electrochem Commun 8:1621–1624

    Article  CAS  Google Scholar 

  44. Zhang X, Devine TM (2006) J Electrochem Soc 153:B344–B351

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Deutsche Forschungsgemeinschaft (Germany) within the Grant BU 1200/16-1 for the financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Vrublevsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ispas, A., Bund, A. & Vrublevsky, I. Investigations on current transients in porous alumina films during re-anodizing using the electrochemical quartz crystal microbalance. J Solid State Electrochem 14, 2121–2128 (2010). https://doi.org/10.1007/s10008-010-1043-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1043-7

Keywords

Navigation