Skip to main content
Log in

Electrocatalytic activity and stability of Ti/IrO2 + MnO2 anode in 0.5 M NaCl solution

  • Original paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Ti/IrO2(x) + MnO2(1-x) anodes have been fabricated by thermal decomposition of a mixed H2IrCl6 and Mn(NO3)2 hydrosolvent. Cyclic voltammetry (CV) and polarization curve have been utilized to investigate the electrochemical behavior and electrocatalytic activity of Ti/IrO2(x) + MnO2(1-x) anodes in 0.5 M NaCl solution (pH = 2). Ti/IrO2+MnO2 anode with 70 mol% IrO2 content has the maximum value of q*, indicating that Ti/IrO2(0.7) + MnO2(0.3) anode has the most excellent electrocatalytic activity for the synchronal evolution of Cl2 and O2 in dilute NaCl solution. Tafel lines displayed two distinct linear regions with one of the slope close to 62 mV dec−1 in the low potential region and the other close to 295 mV dec−1 in the high potential region. Electrochemical impedance spectroscopic is employed to investigate the impedance behavior of Ti/IrO2(x) + MnO2(1-x) anodes in 0.5 M NaCl solution. It is observed that as the R ct, R s and R f values for Ti/IrO2(0.7) + MnO2(0.3) anode become smaller, electrocatalytic activity of Ti/IrO2(0.7) + MnO2(0.3) anode becomes better than that of other Ti/IrO2 + MnO2 anodes with different compositions. Ti/IrO2(0.7) + MnO2(0.3) anode fabricated at 400 °C has been observed to possess the highest service life of 225 h, whereas the accelerated life test is carried out under the anodic current of 2 A cm−2 at the temperature of 50 °C in 0.5 M NaCl solution (pH = 2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang XM, Hu JM, Zhang JQ, Cao CN (2008) Electrochim Acta 53:3386

    Article  CAS  Google Scholar 

  2. Shi HX, Qu JH, Wang AM, Ge JT (2005) Chemosphere 60:326

    Article  CAS  Google Scholar 

  3. Trasatti S (2000) Electrochim Acta 45:2377

    Article  CAS  Google Scholar 

  4. Hernlem BJ (2005) Water Res 39:2245

    Article  CAS  Google Scholar 

  5. Panizza M, Cerisola G (2004) Electrochim Acta 49:3221

    Article  CAS  Google Scholar 

  6. Hu CZ, Liu HJ, Qu JH (2005) Colloid Surface A 260:109

    Article  CAS  Google Scholar 

  7. Beck F (1989) Electrochim Acta 34:811

    Article  CAS  Google Scholar 

  8. Beck F (1989) Corros Sci 29:379

    Article  CAS  Google Scholar 

  9. Trasatti S (1980) Electrodes of conductive metallic oxides. Elsevier, Amsterdam

    Google Scholar 

  10. Hu JM, Meng HM, Zhang JQ, Cao CN (2002) Corros Sci 44:1655

    Article  CAS  Google Scholar 

  11. Ye ZG, Meng HM, Chen D, Yu HY, Huan ZS, Wang XD, Sun DB (2008) Solid State Sci 10:346

    Article  CAS  Google Scholar 

  12. Zhang ZX (2005) Engineering of titanium electrode. Metallurgical Industry Press, Beijing

    Google Scholar 

  13. Wu BL, Lincot D, Vedel J, Yu LT (1997) J Electroanal Chem 420:159

    Article  CAS  Google Scholar 

  14. Fujimura K, Matsui T, Izumiya K, Kumagai N, Akiyama E, Habazaki H, Kawashima A, Asami K, Hashimoto K (1999) Mater Sci Eng A 267:254

    Article  Google Scholar 

  15. Andrade LS, Tasso TT, Da Silva DL, Rocha-Filho RC, Bocchi N, Biaggio SR (2009) Electrochim Acta 54:2024

    Article  CAS  Google Scholar 

  16. Ramesham R (1998) Thin Solid Films 322:158

    Article  CAS  Google Scholar 

  17. Da Silvaa LM, Fernandesb KC, De Fariab LA, Boodts JFC (2004) Electrochim Acta 49:4893

    Article  Google Scholar 

  18. Ye ZG, Meng HM, Sun DB (2008) Electrochim Acta 53:5639

    Article  CAS  Google Scholar 

  19. Ye ZG, Meng HM, Sun DB (2008) J Electroanal Chem 621:49

    Article  CAS  Google Scholar 

  20. Burke LD, Whelan DP (1984) J Electroanal Chem 162:121

    Article  CAS  Google Scholar 

  21. Pickup PG, Birss VI (1988) J Electroanal Chem 240:185

    Article  CAS  Google Scholar 

  22. Angelinetta C, Trasatti S, Atanasoska L, Atanasoski R, Miesvski Z (1989) Mater Chem Phys 22:231

    Article  CAS  Google Scholar 

  23. Atanasoska L, Atanasoski R, Trasatti S (1990) Vacuum 40:91

    Article  CAS  Google Scholar 

  24. Durke LD, Murphy OJ (1979) J Electroanal Chem 96:19

    Article  Google Scholar 

  25. Hu JM, Zhang JQ, Cao CN (2004) Int J Hydrogen Energy 29:791

    Article  CAS  Google Scholar 

  26. Santana MHP, De Faria LA (2006) Electrochim Acta 51:3578

    Article  CAS  Google Scholar 

  27. Cornell A, Håkansson B, Lindbergh G (2003) Electrochim Acta 48:473

    Article  CAS  Google Scholar 

  28. Jin SX, Ye SY (1996) Electrochim Acta 41:827

    Article  CAS  Google Scholar 

  29. Alves VA, Da Silva LA, Boodts JFC (1998) Electrochim Acta 44:1525

    Article  CAS  Google Scholar 

  30. Hou YY, Hu JM, Liu L, Zhang JQ, Cao CN (2006) Electrochim Acta 51:6258

    Article  CAS  Google Scholar 

  31. Hu JM, Zhang JQ, Meng HM, Zhang JQ, Cao CN (2005) Electrochim Acta 50:5370

    Article  CAS  Google Scholar 

  32. Rajkumar D, Song BJ, Kim JG (2007) Dyes Pigm 7:21

    Google Scholar 

Download references

Acknowledgements

This project is financially supported by National Natural Science Foundation of China (50871051), Natural Science Foundation of JiangXi Province Education Department (CB200600003), and Key Laboratory of Nondestructive Test, Ministry of Education (ZD200729003). Grateful acknowledgement goes to them!

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Guo Ye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, XL., Ye, ZG., Hua, XZ. et al. Electrocatalytic activity and stability of Ti/IrO2 + MnO2 anode in 0.5 M NaCl solution. J Solid State Electrochem 14, 1213–1219 (2010). https://doi.org/10.1007/s10008-009-0966-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-009-0966-3

Keywords

Navigation