Skip to main content
Log in

Pt dendrimer nanocomposites for oxygen reduction reaction in direct methanol fuel cells

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Dendrimer-encapsulated Pt nanoparticles (G4OHPt) were prepared by chemical reduction at room temperature. The G4OHPt, with average diameters of ca. 2.7 nm, were characterized by X-ray diffraction, scanning electron microscopy, and thermogravimetric analysis. Electrocatalytic behavior for oxygen reduction reaction was investigated using a rotating disk electrode configuration in an acidic medium, with and without the presence of methanol (0.01, 0.1, and 1 M). Kinetic studies showed that electrodes based on Pt nanoparticles encapsulated inside the dendrimer display a higher selectivity for ORR in the presence of methanol than electrodes based on commercial Pt black catalysts. Also, the dendritic polymer confers a protective effect on the Pt in the presence of methanol, which allows its use as a cathode in a direct methanol fuel cell operating at different temperatures. Good performance was obtained at 90 °C and 2 bar of pressure with a low platinum loading on the electrode surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhong S, Cui X, Cai H, Fu T, Zhao C, Na H (2007) J Power Sources 164:65. doi:10.1016/j.jpowsour.2006.10.077

    Article  CAS  Google Scholar 

  2. Chu D, Jian R (2002) J Electrochem Soc 148:591

    CAS  Google Scholar 

  3. Dillon R, Srinivasan S, Arico AS, Antonucci V (2004) J Power Sources 127:112. doi:10.1016/j.jpowsour.2003.09.032

    Article  CAS  Google Scholar 

  4. Gasteiger HA, Marković N, Ross PN, Cains EJ (1993) J Phys Chem 97:12020. doi:10.1021/j100148a030

    Article  CAS  Google Scholar 

  5. Gilman S, Chu D (2003) In: Vielstich W, Lamm A, Gaister HA (eds) Handbook of fuel cells: fundamentals, technology and application. Wiley, New York

    Google Scholar 

  6. Eickes C, Piela P, Davey J, Zelenay P (2006) J Electrochem Soc 153:A171. doi:10.1149/1.2136073

    Article  CAS  Google Scholar 

  7. Liu Z, Ling XY, Su X, Lee JY (2004) J Phys Chem B 108:8234. doi:10.1021/jp049422b

    Article  CAS  Google Scholar 

  8. Baglio V, Aricó AS, Stassi A, D’Urso C, Di Blasi A, Castro Luna AM, Antonucci V (2006) J Power Sources 159:900. doi:10.1016/j.jpowsour.2005.12.088

    Article  CAS  Google Scholar 

  9. Yang H, Alonso-Vante N, Lamy C, Akins DL (2005) J Electrochem Soc 152:A704. doi:10.1149/1.1862258

    Article  CAS  Google Scholar 

  10. Xiong L, Manthiram A (2005) J Electrochem Soc 152:A697. doi:10.1149/1.1862256

    Article  CAS  Google Scholar 

  11. Baglio V, Stassi A, Di Blasi A, D’Urso C, Antonucci V, Aricò AS (2007) Electrochim Acta 53:1361. doi:10.1016/j.electacta.2007.04.099

    Article  Google Scholar 

  12. Baglio V, Di Blasi A, D’Urso C, Antonucci V, Aricò AS, Ornelas R, Morales-Acosta D, Ledesma-Garcia J, Godinez LA, Morales-Alvarez L, Arriaga LG (2008) J Electrochem Soc 155:B829. doi:10.1149/1.2938368

    Article  CAS  Google Scholar 

  13. Kinoshita K (1992) Electrochemical oxygen technology. Wiley, Hoboken

    Google Scholar 

  14. Takasu Y, Kawaguchi T, Sugimoto W, Murakami Y (2003) Electrochim Acta 48:3861. doi:10.1016/S0013-4686(03)00521-8

    Article  CAS  Google Scholar 

  15. Zhao M, Sun L, Crooks RM (1998) J Am Chem Soc 120:4877. doi:10.1021/ja980438n

    Article  CAS  Google Scholar 

  16. Balogh L, Tomalia DA (1998) J Am Chem Soc 120:7355. doi:10.1021/ja980861w

    Article  CAS  Google Scholar 

  17. Scout RW, Wilson OM, Crooks RM (2005) J Phys Chem B 109:692. doi:10.1021/jp0469665

    Article  Google Scholar 

  18. Ye H, Crooks RM (2007) J Am Chem Soc 129:3627. doi:10.1021/ja068078o

    Article  CAS  Google Scholar 

  19. Ledesma-García J, Escalante-Garcia IL, Chapman TW, Rodríguez FJ, Godínez LA (2006) ECS Trans 3:12

    Google Scholar 

  20. Escalante-Garcia IL, Ledesma-Garcia J, Chapman TW, Godinez LA (2008) ECS Trans 11:43. doi:10.1149/1.2953505

    Article  CAS  Google Scholar 

  21. Knecht MR, Wright DW (2004) Chem Mater 16:4890. doi:10.1021/cm049058t

    Article  CAS  Google Scholar 

  22. Vijayaraghavan G, Stevenson KJ (2007) Langmuir 23:5279. doi:10.1021/la0637263

    Article  CAS  Google Scholar 

  23. Ledesma-Garcia J, Escalante-Garcia IL, Rodríguez FJ, Chapman TW, Godínez LA (2008) J Appl Electrochem 38:515. doi:10.1007/s10800-007-9466-2

    Article  CAS  Google Scholar 

  24. Crespilho FN, Huguenin F, Zucolotto V, Olivi P, Nart FC, Oliveira ON Jr (2006) Electrochem Commun 8:348. doi:10.1016/j.elecom.2005.12.003

    Article  CAS  Google Scholar 

  25. Raghu S, Nirmal RG, Mathiyarasu J, Berchmans S, Phani KLN, Yegnaraman V (2007) Catal Lett 119:40. doi:10.1007/s10562-007-9154-1

    Article  CAS  Google Scholar 

  26. Ledesma-Garcia J, Barbosa R, Chapman TW, Arriaga LG, Godinez LA (2009) Int J Hydrogen Energy 34:2008. doi:10.1016/j.ijhydene.2008.11.106

    Article  CAS  Google Scholar 

  27. Raghu S, Berchmans S, Phani KLN, Yegnaraman V (2007) Chem Asian J 2:775. doi:10.1002/asia.200700013

    Article  CAS  Google Scholar 

  28. Maiyalagan T (2008) J Solid State Electrochem. doi:10.1007/s10008-008-0730-0

  29. Crooks RM, Zhao M, Sun L, Chechik V, Yeung LK (2001) Acc Chem Res 34:181. doi:10.1021/ar000110a

    Article  CAS  Google Scholar 

  30. Uvarov V, Popov I (2007) Mater Charact 58:883. doi:10.1016/j.matchar.2006.09.002

    Article  CAS  Google Scholar 

  31. Ye H, Crooks RM (2005) J Am Chem Soc 127:4930. doi:10.1021/ja0435900

    Article  CAS  Google Scholar 

  32. Aricò AS, Shukla AK, el-Khatib KM, Cretì P, Antonucci V (1999) J Appl Electrochem 29:671. doi:10.1023/A:1003538230286

    Article  Google Scholar 

  33. Murthi VS, Urian RC, Mukerjee S (2004) J Phys Chem B 108:11011. doi:10.1021/jp048985k

    Article  CAS  Google Scholar 

  34. Ozturk O, Black TJ, Perrine K, Pizzolato K, Williams CT, Parsons FW, Ratliff JS, Gao J, Murphy CJ, Xie H, Ploehn HJ, Chen DA (2005) Langmuir 21:3998. doi:10.1021/la047242n

    Article  CAS  Google Scholar 

  35. Thompson SD, Jordan LR, Forsyth M (2001) Electrochim Acta 46:1657. doi:10.1016/S0013-4686(00)00767-2

    Article  CAS  Google Scholar 

  36. Aricò AS, Baglio V, Di Blasi A, Modica E, Monforte G, Antonucci V (2005) J Electroanal Chem 576:161. doi:10.1016/j.jelechem.2004.10.014

    Article  Google Scholar 

  37. Vögle F, Gestermann S, Hesse R, Schwierz H, Windisch B (2000) Prog Polym Sci 25:987. doi:10.1016/S0079-6700(00)00017-4

    Article  Google Scholar 

  38. Gileadi E (1993) Electrode kinetics for chemists, chemical engineers and materials scientists. Wiley-VCH, New York

    Google Scholar 

  39. Bard AJ, Faulkner L (1980) Electrochemical methods. Wiley, New York

    Google Scholar 

Download references

Acknowledgments

This study was supported by The Mexican Council for Science and Technology (CONACyT, Grant 45517). L-G J and E-G IL are grateful to CONACyT for graduate fellowships. Arriaga LG expresses thanks to The Mexican Council for Science and Technology (Conacyt, SEP-Conacyt 61067).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis A. Godinez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ledesma-Garcia, J., Escalante-Garcia, I.L., Chapman, T.W. et al. Pt dendrimer nanocomposites for oxygen reduction reaction in direct methanol fuel cells. J Solid State Electrochem 14, 835–840 (2010). https://doi.org/10.1007/s10008-009-0862-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-009-0862-x

Keywords

Navigation