Skip to main content
Log in

Effect of the cathode structure on the electrochemical performance of anode-supported solid oxide fuel cells

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The study elementarily investigated the effect of the cathode structure on the electrochemical performance of anode-supported solid oxide fuel cells. Four single cells were fabricated with different cathode structures, and the total cathode thickness was 15, 55, 85, and 85 µm for cell-A, cell-B, cell-C, and cell-D, respectively. The cell-A, cell-B, and cell-D included only one cathode layer, which was fabricated by \( \left( {{\text{La}}_{0.74} {\text{Bi}}_{0.10} {\text{Sr}}_{0.16} } \right){\text{MnO}}_{{3 - \delta }} \) (LBSM) electrode material. The cathode of the cell-C was composed of a \( \left( {{\text{La}}_{0.74} {\text{Bi}}_{0.10} {\text{Sr}}_{0.16} } \right){\text{MnO}}_{{3 - \delta }} - \left( {{\text{Bi}}_{0.7} {\text{Er}}_{0.3} {\text{O}}_{1.5} } \right) \) (LBSM–ESB) cathode functional layer and a LBSM cathode layer. Different cathode structures leaded to dissimilar polarization character for the four cells. At 750°C, the total polarization resistance (R p) of the cell-A was 1.11, 0.41 and 0.53 Ω cm2 at the current of 0, 400, and 800 mA, respectively, and that of the cell-B was 1.10, 0.39, and 0.23 Ω cm2 at the current of 0, 400, and 800 mA, respectively. For cell-C and cell-D, their polarization character was similar to that of the cell-B and R p also decreased with the increase of the current. The maximum power density was 0.81, 1.01, 0.79, and 0.43 W cm−2 at 750°C for cell-D, cell-C, cell-B, and cell-A, respectively. The results demonstrated that cathode structures evidently influenced the electrochemical performance of anode-supported solid oxide fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ujiie T (2007) ECS Trans 7:3. doi:10.1149/1.2729066

    Article  Google Scholar 

  2. Surdoval WA (2007) ECS Trans 7:11. doi:10.1149/1.2729067

    Article  Google Scholar 

  3. Rietveld B (2007) ECS Trans 7:17. doi:10.1149/1.2729068

    Article  Google Scholar 

  4. Mai A, Haanappel VAC, Uhlenbruck S, Tietz F, Stover D (2005) Solid State Ion 176:1341. doi:10.1016/j.ssi.2005.03.009

    Article  CAS  Google Scholar 

  5. Tietz F, Haanappel VAC, Mai A, Mertens J, Stover D (2006) J Power Sources 156:20. doi:10.1016/j.jpowsour.2005.08.015

    Article  CAS  Google Scholar 

  6. Murray EP, Sever MJ, Barnett SA (2002) Solid State Ion 148:27. doi:10.1016/S0167-2738(02)00102-9

    Article  Google Scholar 

  7. Tu HY, Takeda Y, Imanishi N, Yamamoto O (1999) Solid State Ion 117:277. doi:10.1016/S0167-2738(98)00428-7

    Article  CAS  Google Scholar 

  8. Yamamoto O, Takeda Y, Kanno R, Noda M (1987) Solid State Ion 22:241. doi:10.1016/0167-2738(87)90039-7

    Article  CAS  Google Scholar 

  9. Jiang SP, Wang W (2005) Solid State Ion 176:1351. doi:10.1016/j.ssi.2005.03.011

    Article  CAS  Google Scholar 

  10. Tsai T, Barnett SA (1997) Solid State Ion 98:191. doi:10.1016/S0167-2738(97)00113-6

    Article  CAS  Google Scholar 

  11. Erning JW, Hauber T, Stimming U, Wipperman K (1996) J Power Sources 61:205. doi:10.1016/S0378-7753(96)02358-0

    Article  CAS  Google Scholar 

  12. Wang S, Kato T, Nagata S, Kaneko T, Iwashita N, Honda T, Dokiya M (2002) Solid State Ion 152:477. doi:10.1016/S0167-2738(02)00376-4

    Article  Google Scholar 

  13. Sahibzada M, Benson SJ, Rudkin RA, Kilner JA (1998) Solid State Ion 113:285. doi:10.1016/S0167-2738(98)00294-X

    Article  Google Scholar 

  14. Wang S, Kato T, Nagata S, Honda T, Kaneko T, Iwashita N, Dokiya M (2002) Solid State Ion 146:203. doi:10.1016/S0167-2738(01)01015-3

    Article  CAS  Google Scholar 

  15. Sasaki K, Tamura J, Dokiya M (2001) Solid State Ion 144:233. doi:10.1016/S0167-2738(01)00972-9

    Article  CAS  Google Scholar 

  16. Watanabe M, Uchida H, Shibata M, Mochizuki N, Amikura K (1994) J Electrochem Soc 141:342. doi:10.1149/1.2054728

    Article  CAS  Google Scholar 

  17. Uchida H, Yoshida M, Watanabe M (1999) J Electrochem Soc 146:1. doi:10.1149/1.1391555

    Article  CAS  Google Scholar 

  18. Sasaki K, Tamura J, Hosoda H, Lan TN, Yasumoto K, Dokiya M (2002) Solid State Ion 148:551. doi:10.1016/S0167-2738(02)00116-9

    Article  CAS  Google Scholar 

  19. Tsai T, Barnett SA (1997) Solid State Ion 93:207. doi:10.1016/S0167-2738(96)00524-3

    Article  CAS  Google Scholar 

  20. Jørgensen MJ, Primdahl S, Mogensen M (1999) Electrochim Acta 44:4195. doi:10.1016/S0013-4686(99)00134-6

    Article  Google Scholar 

  21. Juhl M, Primdahl S, Manon C, Mogensen M (1996) J Power Sources 61:173. doi:10.1016/S0378-7753(96)02361-0

    Article  CAS  Google Scholar 

  22. Hart NT, Brandon NP, Day MJ, Lapena-Rey N (2002) J Power Sources 106:42. doi:10.1016/S0378-7753(01)01035-7

    Article  CAS  Google Scholar 

  23. Lee YK, Kim JY, Lee YK, Kim I, Moon HS, Park JW, Jacobson CP, Visco SJ (2003) J Power Sources 115:219. doi:10.1016/S0378-7753(02)00727-9

    Article  CAS  Google Scholar 

  24. Sasaki K, Wurth JP, Gschwen R, Godickemeier K, Gauckler LJ (1996) J Electrochem Soc 143:530. doi:10.1149/1.1836476

    Article  CAS  Google Scholar 

  25. Haanappel VAC, Mertens J, Rutenbeck D, Tropartz C, Herzhof W, Sebold D, Tietz F (2005) J Power Sources 141:216. doi:10.1016/j.jpowsour.2004.09.016

    Article  CAS  Google Scholar 

  26. Wang ZR, Qian JQ, Cao JD, Wang SR, Wen TL (2007) J Alloy Comp 437:264. doi:10.1016/j.jallcom.2006.07.110

    Article  CAS  Google Scholar 

  27. Li JL, Wang SR, Wang ZR, Liu RZ, Wen TL, Wen ZY (2008) J Power Sources 179:474. doi:10.1016/j.jpowsour.2008.01.017

    Article  CAS  Google Scholar 

  28. Van Heuveln FH, Bouwmeester HJM (1997) J Electrochem Soc 144:134. doi:10.1149/1.1837375

    Article  Google Scholar 

Download references

Acknowledgment

This work is supported financially by the Chinese High Technology Development Project (2007AA05Z151).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaorong wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., wang, S., Wang, Z. et al. Effect of the cathode structure on the electrochemical performance of anode-supported solid oxide fuel cells. J Solid State Electrochem 14, 579–583 (2010). https://doi.org/10.1007/s10008-009-0813-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-009-0813-6

Keywords

Navigation