Skip to main content
Log in

Redox-active silica nanoparticles. Part 4. Synthesis, size distribution, and electrochemical adsorption behavior of ferrocene- and (diamine)(diphosphine)-ruthenium(II)-modified Stöber silica colloidal particles

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Stöber silica nanoparticles with a diameter of approximately 800 nm are covalently modified by redox-active ferrocene or (diamine)(diphosphine) ruthenium(II) units attached to a spacer. The particles are characterized by NMR spectroscopic and chemical techniques. Two variants of modification by condensation are compared. Besides an estimation of the size and the particle porosity, the agglomeration behavior in solvents of different polarity is investigated. The adsorption of the particles to an electrode surface is followed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The procedure for preparation of 3 has been described previously in [53]. Inadvertently, an essential part of the procedure was omitted, and therefore, full details are given here.

References

  1. Plumeré N, Speiser B, Mayer HA, Joosten D, Wesemann L (2009) Chem Eur J 15:936–946

    Article  CAS  Google Scholar 

  2. Willner I, Willner B (2002) Pure Appl Chem 74:1773–1783

    Article  CAS  Google Scholar 

  3. Astruc D (2003) Pure Appl Chem 75:461–481

    Article  CAS  Google Scholar 

  4. Rolison DR (2003) Science 299:1698–1701

    Article  CAS  Google Scholar 

  5. Shenhar R, Rotello VM (2003) Acc Chem Res 36:549–561

    Article  CAS  Google Scholar 

  6. Schlögl R, Abd Hamid SB (2004) Angew Chem 116:1656–1667 (Angew Chem Int Ed 43:1628–1637)

    Google Scholar 

  7. Cushing BL, Kolesnichenko VL, O’Connor CJ (2004) Chem Rev 104:3893–3946

    Article  CAS  Google Scholar 

  8. Ball P (2004) Nachr Chem 52:131–136

    Article  CAS  Google Scholar 

  9. Hammond PT (2004) Adv Mater 16:1271–1293

    Article  CAS  Google Scholar 

  10. Katz E, Willner I (2004) Angew Chem 116:6166–6235 (Angew Chem Int Ed 43:6042–6108)

    Google Scholar 

  11. Antonietti M, Ozin GA (2004) Chem Eur J 10:28–41

    Article  CAS  Google Scholar 

  12. Tomalia DA (2004) Aldrichim Acta 37:39–57

    CAS  Google Scholar 

  13. Raimondi F, Scherer GG, Kötz R, Wokaun A (2005) Angew Chem 117:2228–2248 (Angew Chem Int Ed 44:2190–2209)

    Google Scholar 

  14. Kim JH, Kang M-S, Kim YJ, Won J, Park N-G, Kang YS (2004) Chem Commun 1662–1663

  15. Anderson ML, Stroud RM, Rolison DR (2002) Nano Lett 2:235–240

    Article  CAS  Google Scholar 

  16. Yoon T-J, Kim JS, Kim BG, Yu KN, Cho M-H, Lee J-K (2005) Angew Chem 117:1092–1095 (Angew Chem Int Ed 44:1068–1071)

    Google Scholar 

  17. Wallace JM, Rice JK, Pietron JJ, Stroud RM, Long JW, Rolison DR (2003) Nano Lett 3:1463–1467

    Article  CAS  Google Scholar 

  18. Miller CR, Vogel R, Surawski PPT, Corrie SR, Rühmann A, Trau M (2005) Chem Commun 4783–4785

  19. Jang J, Lim B (2003) Angew Chem 115:5758–5761 (Angew Chem Int Ed 42:5600–5603)

    Google Scholar 

  20. Unger K, Giesche H, Kinkel J (1987) Kugelförmige SiO2-Partikel, Patent Ger. Offen. DE 3534143 A1, Merck Patent GmbH

  21. Stöber W, Fink A, Bohn E (1968) J Colloid Interface Sci 26:62–69

    Article  Google Scholar 

  22. Lindner E, Schneller T, Auer F, Mayer HA (1999) Angew Chem 111:2288–2309 (Angew Chem Int Ed 38:2154–2174)

    Google Scholar 

  23. Budny A, Novak F, Plumeré N, Schetter B, Speiser B, Straub D, Mayer HA, Reginek M (2006) Langmuir 22:10605–10611

    Article  CAS  Google Scholar 

  24. Ling XY, Reinhoudt DN, Huskens J (2006) Langmuir 22:8777–8783

    Article  CAS  Google Scholar 

  25. Zhuravlev LT (2000) Colloids Surf A 173:1–38

    Article  CAS  Google Scholar 

  26. Novak F, Speiser B, Lindner E, Lu Z-L, Mayer HA (2004) Angew Chem 116:2059–2062 (Angew Chem Int Ed 43:2025–2028)

  27. Lindner E, Lu Z-L, Mayer HA, Speiser B, Tittel C, Warad I (2005) Electrochem Commun 7:1013–1020

    Article  CAS  Google Scholar 

  28. Lindner E, Warad I, Eichele K, Mayer HA (2003) Inorg Chim Acta 350:49–56

    Article  CAS  Google Scholar 

  29. Lindner E, Mayer HA, Warad I, Eichele K (2003) J Organomet Chem 665:176–185

    Article  CAS  Google Scholar 

  30. Lindner E, Ghanem A, Warad I, Eichele K, Mayer HA, Schurig V (2003) Tetrahedron Asymmetry 14:1045–1053

    Article  CAS  Google Scholar 

  31. Lu Z-L, Eichele K, Warad I, Mayer HA, Lindner E, Jiang Z-j, Schurig V (2003) Z Anorg Allg Chem 629:1308–1315

    Article  CAS  Google Scholar 

  32. Nachtigal C, Al-Gharabli S, Eichele K, Lindner E, Mayer HA (2002) Organometallics 21:105–112

    Article  CAS  Google Scholar 

  33. Noyori R (2002) Angew Chem 114:2108–2123 (Angew Chem Int Ed 41:2008–2022)

    Google Scholar 

  34. Noyori R, Ohkuma T (2001) Angew Chem 113:40–75 (Angew Chem Int Ed 40:40–73)

    Google Scholar 

  35. Merrifield RB (1963) J Am Chem Soc 85:2149–2154

    Article  CAS  Google Scholar 

  36. Kallury KMR, Macdonald PM, Thompson M (1994) Langmuir 10:492–499

    Article  CAS  Google Scholar 

  37. Walcarius A, Mandler D, Cox JA, Collinson M, Lev O (2005) J Mater Chem 15:3663–3689

    Article  CAS  Google Scholar 

  38. Jarzȩbińska A, Rowiński P, Zawisza I, Bilewicz R, Siegfried L, Kaden T (1999) Anal Chim Acta 396:1–12

    Article  Google Scholar 

  39. Anson FC, Ni C-L, Saveant J-M (1985) J Am Chem Soc 107:3442–3450

    Article  CAS  Google Scholar 

  40. Amatore C, Bouret Y, Maisonhaute E, Goldsmith JI, Abruña HD (2001) Chem Phys Chem 2:130–134

    CAS  Google Scholar 

  41. Amatore C, Bouret Y, Maisonhaute E, Goldsmith JI, Abruña HD (2001) Chem Eur J 7:2206–2226

    Article  CAS  Google Scholar 

  42. Takada K, Storrier GD, Goldsmith JI, Abruña HD (2001) J Phys Chem B 105:2404–2411

    Article  CAS  Google Scholar 

  43. Takada K, Díaz DJ, Abruña HD, Cuadrado I, Gonzalez B, Casado CM, Alonso B, Morán M, Losada J (2001) Chem Eur J 7:1109–1117

    Article  CAS  Google Scholar 

  44. Goldsmith JI, Takada K, Abruña HD (2002) J Phys Chem B 106:8504–8513

    Article  CAS  Google Scholar 

  45. Buchmann S, Mayer HA, Speiser B, Seiler M, Bertagnolli H, Steinbrecher S, Plies E (2001) Electrochim Acta 46:3207–3217

    Article  CAS  Google Scholar 

  46. Dümmling S, Eichhorn E, Schneider S, Speiser B, Würde M (1996) Curr Sep 15:53–56

    Google Scholar 

  47. U.S. Secretary of Commerce (2008) http://webbook.nist.gov/chemistry/

  48. Provencher SW (1982) Comput Phys Commun 27:213–227

    Article  Google Scholar 

  49. Provencher SW (1982) Comput Phys Commun 27:229–242

    Article  Google Scholar 

  50. Gollas B, Krauß B, Speiser B, Stahl H (1994) Curr Sep 13:42–44

    CAS  Google Scholar 

  51. Gritzner G, Kůta J (1984) Pure Appl Chem 56:461–466

    Article  Google Scholar 

  52. Halseid R (2004) Ammonia as hydrogen carrier—effects of ammonia on polymer electrolyte membrane fuel cells. PhD thesis, NTNU Trondheim, Norway

  53. Schetter B, Speiser B (2004) J Organomet Chem 689:1472–1480

    Article  CAS  Google Scholar 

  54. Lindner E, Schober U, Fawzi R, Hiller W, Englert U, Wegner P (1987) Chem Ber 120:1621–1628

    Article  CAS  Google Scholar 

  55. Kaiser E, Colescott RL, Bossinger CD, Cook PI (1970) Anal Biochem 34:595–598

    Article  CAS  Google Scholar 

  56. Giesche H (2000) In: Sugimoto T (ed), Fine particles, synthesis, characterization, and mechanism of growth, vol 92, Surfactant science series. Dekker, New York, pp 126–146

    Google Scholar 

  57. Unger KK (1979) Porous silica. Its properties and use as support in column liquid chromatography, vol 16, J. Chromatogr. Library. Elsevier, Amsterdam, pp 92–96

    Google Scholar 

  58. Dorsey JG, Dill KA (1989) Chem Rev 89:331–346

    Article  CAS  Google Scholar 

  59. Eichele K, Nachtigal C, Jung S, Mayer HA, Lindner E, Ströbele M (2004) Magn Reson Chem 42:807–813

    Article  CAS  Google Scholar 

  60. Colic M, Fuerstenau DW (1997) Langmuir 13:6644–6649

    Article  CAS  Google Scholar 

  61. Grübel G, Abernathy DL, Riese DO, Vos WL, Wegdam GH (2000) J Appl Cryst 33:424–427

    Article  Google Scholar 

  62. Papirer E, Balard H (1998) In: Legrand AP (ed) The surface properties of silicas. Wiley, Chichester, pp 315–364

    Google Scholar 

  63. So J-H, Oh M-H, Lee J-D, Yang S-M (2001) J Chem Eng Jpn 34:262–268

    Article  CAS  Google Scholar 

  64. Iler RK (1979) The chemistry of silica. Solubility, polymerization, colloid and surface properties, and biochemistry. Wiley, New York

    Google Scholar 

  65. Grillet Y, Llewellyn PL (1998) In: Legrand AP (ed) The surface properties of silicas. Wiley, Chichester, pp 23–81

    Google Scholar 

  66. Jerkiewicz G, Vatankhah G, Lessard J, Soriaga MP, Park Y-S (2004) Electrochim Acta 49:1451–1459

    CAS  Google Scholar 

  67. Wright JEI, Cosman NP, Fatih K, Omanovic S, Roscoe SG (2004) J Electroanal Chem 564:185–197

    Article  CAS  Google Scholar 

  68. Wilson CD, Roscoe SG (2004) Langmuir 20:7547–7556

    Article  CAS  Google Scholar 

  69. Takada K, Díaz DJ, Abruña HD, Cuadrado I, Casado C, Alonso B, Morán M, Losada J (1997) J Am Chem Soc 119:10763–10773

    Article  CAS  Google Scholar 

  70. Storrier GD, Takada K, Abruña HD (1999) Langmuir 15:872–884

    Article  CAS  Google Scholar 

  71. Murray RW (ed) (1992) Molecular design of electrode surfaces, vol 22, Techniques of chemistry. Wiley, New York

    Google Scholar 

  72. Müller U (1996) Anorganische Strukturchemie, Teubner, Stuttgart

    Google Scholar 

  73. Mine E, Yamada A, Kobayashi Y, Konno M, Liz-Marzán LM (2003) J Colloid Interface Sci 264:385–390

    Article  CAS  Google Scholar 

  74. Moses PR, Murray RW (1977) J Electroanal Chem 77:393–399

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Deutsche Forschungsgemeinschaft for support of this work within the Graduiertenkolleg 441 “Chemie in Interphasen,” as well as the Max–Buchner–Forschungsstiftung and the Marie Curie training site “SurFace” for providing fellowships to F.N. We acknowledge possibilities to record BET measurements in the Center for Applied Geosciences, Universität Tübingen (Professor Dr. P. Grathwohl, Dr. T. Wendel, and Ms. A. Walz), and SEM pictures in the Institut für Physik, Universität Tübingen (Professor Dr. E. Plies, Ms. Dorothea Adam). We thank Professor Dr. H.-J. Meyer and Ms. Ruth Schmitt (Institut für Anorganische Chemie, Universität Tübingen) for the use of instrumentation and the uncomplicated technical assistance concerning powder X-ray experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Speiser.

Additional information

Part 3: see, ref. [1]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novak, F., Plumeré, N., Schetter, B. et al. Redox-active silica nanoparticles. Part 4. Synthesis, size distribution, and electrochemical adsorption behavior of ferrocene- and (diamine)(diphosphine)-ruthenium(II)-modified Stöber silica colloidal particles. J Solid State Electrochem 14, 289–303 (2010). https://doi.org/10.1007/s10008-009-0811-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-009-0811-8

Keywords

Navigation