Skip to main content
Log in

Platinum–tin complexes as catalysts for the anodic oxidation of borohydride

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Platinum–tin complexes were prepared by the reduction of Pt(IV) with Sn(II) in HCl media and studied by light absorption spectrometry, X-ray photoelectron spectroscopy (XPS), and electron microscopy. The formation of three complexes, H3[Pt(SnCl3)5], H2[Pt(SnCl3)2Cl2], and H2[Pt3(SnCl3)8], depending on HCl and SnCl2 concentrations, has been shown. The glassy carbon (GC) electrode modified in the complexes solutions was found to be an electrocatalyst for borohydride oxidation in a 1.0-M NaOH solution. Comparison of BH4 electrooxidation on Pt and on GC modified with platinum–tin complexes has shown that catalytic hydrolysis of BH4 did not proceed in the latter case in contrast to its oxidation on the Pt electrode, and only direct BH4 oxidation has been observed in the positive potentials scan. The activity of Pt–Sn complexes for BH4 oxidation changes with time and eventually decreases due to Sn(II), bound in the complex with Pt(II), oxidation by atmospheric oxygen. The complexes may be renewed by addition of missing amounts of SnCl2 and HCl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ohno I, Wakabayashi O, Haruyama S (1985) J Electrochem Soc 132:2323

    Article  CAS  Google Scholar 

  2. Liu BH, Li ZP, Suda S (2004) Electrochim Acta 49:3097

    Article  CAS  Google Scholar 

  3. Demirci UB (2007) J Power Sources 172:676

    Article  CAS  Google Scholar 

  4. Kim JH, Kim HS, Kang YM, Song MS, Rajendran S, Han SC, Jung DH, Lee JY (2004) J Electrochem Soc 151:A1039

    Article  CAS  Google Scholar 

  5. Suzuki K, Yumura T, Mizuguchi M, Tanaka Y, Chen C, Akashi M (2000) J Appl Polymer Sci 77:2678

    Article  CAS  Google Scholar 

  6. Atwan MH, Macdonald CLB, Northwood DO, Gyenge EL (2006) J Power Sources 158:36

    Article  CAS  Google Scholar 

  7. Bai Y, Wu C, Wu F, Yi B (2006) Mater Lett 60:2236

    Article  CAS  Google Scholar 

  8. Jiang L, Sun G, Zhou Z, Zhou W, Xin Q (2004) Catalysis Today 93–95:665

    Article  Google Scholar 

  9. Coloma F, Sepúlveda-Escribano A, Fierro JLG, Rodríguez-Reinoso F (1996) Appl Catal A Gen 136:231

    Article  CAS  Google Scholar 

  10. Stalnionis G, Tamašauskaitė-Tamašiūnaitė L, Pautienienė V, Sudavičius A, Jusys Z (2004) J Solid State Electrochem 8:892

    Article  CAS  Google Scholar 

  11. Ara I, Falvello LR, Fernández JD, Forniés J, Gil B, Lalinde E, Usón I (2005) Inorg Chim Acta 358:315

    Article  CAS  Google Scholar 

  12. Albinati A, Pregosin PS, Rüegger H (1984) Inorg Chim Acta 86:55

    Article  Google Scholar 

  13. Holt MS, Wilson WL, Nelson JH (1989) Chem Rev 89:11

    Article  CAS  Google Scholar 

  14. Elizarova GL, Matvienko LG (1970) J Anal Chem 25:301 (in Russian)

    CAS  Google Scholar 

  15. Tarozaitė R, Jagminienė A, Jasulaitienė V, Kurtinaitienė M (2007) Chemija 18:1

    Google Scholar 

  16. Antonov PG, Kukushkin YN, Shtrele VG, Kostikov YP, Egorov FK (1982) Zh Neorg Khimii 27:3130 (in Russian)

    CAS  Google Scholar 

  17. Liu BH, Li ZP, Arai K, Suda S (2005) Electrochim Acta 50:3719

    Article  CAS  Google Scholar 

  18. Chatenet M, Micoud F, Roche I, Chainet E (2006) Electrochim Acta 51:5459

    Article  CAS  Google Scholar 

  19. Antolini E, Salgado JRC, Santos AM, Gonzalez ER (2005) Electrochem Solid-State Lett 8:A226

    Article  CAS  Google Scholar 

  20. Gyenge E (2004) Electrochim Acta 49:965

    Article  CAS  Google Scholar 

  21. Cheng H, Scott K (2006) J Power Sources 160:407

    Article  CAS  Google Scholar 

  22. Creighton JA, Eadon DG (1991) J Chem Soc Faraday Trans 87:3881

    Article  CAS  Google Scholar 

  23. Lindsey RV, Parshall GW, Stolberg UG (1966) Inorg Chem 5:109

    Article  CAS  Google Scholar 

  24. Demirci UB (2007) J Power Sources 172:676

    Article  CAS  Google Scholar 

  25. Martins JI, Nunes MC (2008) J Power Sources 175:244

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to express their gratitude to Dr. Aldona Jagminienė for the help in the recording of light absorption spectra and Dr. Marija Kurtinaitienė for electron microscopy studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loreta Tamašauskaitė Tamašiūnaitė.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarozaitė, R., Tamašauskaitė Tamašiūnaitė, L. & Jasulaitienė, V. Platinum–tin complexes as catalysts for the anodic oxidation of borohydride. J Solid State Electrochem 13, 721–731 (2009). https://doi.org/10.1007/s10008-008-0606-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-008-0606-3

Keywords

Navigation