Skip to main content
Log in

Modification of a Pt surface by spontaneous Sn deposition for electrocatalytic applications

1. Catalyst preparation and characterization

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In the present communication we explored a simple “dip-coating” method for spontaneous (without applying an external current or additional reducing agents) modification of Pt surface by both tin oxy-species and tin metal based on hydrolysis of tin chloride complex and autocatalytic (electroless) deposition of tin for fabrication of the fuel cell catalysts with improved CO tolerance. It consisted of (i) Pt immersion into SnCl2/HCl solution under open-circuit conditions; (ii) subsequent rinsing of the surface by pure water. The resulting Sn-modified Pt surfaces were characterized by atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV). Two types of tin species, namely, tin oxide/hydroxide species and metallic tin were identified at Pt surface. Tin oxide/hydroxide species were assumed to be derived as a result of Sn(II) chloride complex hydrolysis, while tin metal particles were most likely deposited spontaneously on Pt surface due to disproportionation of Sn(II) to Sn(IV) and metallic tin, competing with dissolution of the Sn deposit in strongly acidic medium. Modifying tin species show a satisfactory stability in 0.5-M H2SO4 solution at potentials relevant to low-temperature fuel cell operating conditions (below 0.6 V vs. a standard hydrogen electrode, SHE).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Watanabe M, Motoo S (1975) J Electroanal Chem 60:267

    Article  CAS  Google Scholar 

  2. Watanabe M, Motoo S (1975) J Electroanal Chem 60:275

    Article  CAS  Google Scholar 

  3. Markovic NM, Ross PN (2002) Surf Sci Rept 45:117

    Article  CAS  Google Scholar 

  4. Gurau B, Viswanathan R, Liu R, Lafrenz TJ, Ley KL, Smotkin ES, (1998) J Phys Chem B 102:9997

    Article  CAS  Google Scholar 

  5. Reddington E, Spienza A, Gurau B, Viswanathan R, Sarangapani S, Smotkin ES, Mallouk TE (1998) Science 280:1735

    Article  CAS  PubMed  Google Scholar 

  6. Reetz MT, Lopez M, Grünert W, Vogel W, Mahlendorf F (2003) J Phys Chem B 107:7414

    Article  CAS  Google Scholar 

  7. Petry OA, Podlovchenko BI, Frumkin AN, Lal H (1965) J Electroanal Chem 10:253

    Article  CAS  Google Scholar 

  8. Iwasita T, Nart FC, Vielstich W (1990) Ber Bunsen-Ges Phys Chem 94:1030

    Google Scholar 

  9. Jusys Z, Massong H, Baltruschat H (1999) J Electrochem Soc 146:11093

    Article  Google Scholar 

  10. Iudice de Souza JP, Iwasita T, Nart FC, Vielstich W (2000) J Appl Electrochem 30:43

    Google Scholar 

  11. Habble CT, Wrighton MS (1991) Langmuir 7:1305

    CAS  Google Scholar 

  12. Gonzales MJ, Hable CT, Wrighton MS (1998) J Phys Chem B 102:9881

    Article  Google Scholar 

  13. Cathro KJ (1969) J Electrochem Soc 116:1608

    CAS  Google Scholar 

  14. Andrew MR, Druby JS, McNicol BD, Pinnington C, Short RT (1976) J Appl Electrochem 6:99

    CAS  Google Scholar 

  15. Watanabe M, Uchida M, Motoo S (1987) J Electroanal Chem 229:395

    Article  CAS  Google Scholar 

  16. Boennemann H, Richards RM (2001) Eur J Inorg Chem 2460

  17. Roth C, Martz N, Hahn F, Leger JM, Lamy C, Fuess H (2002) J Electrochem Soc 149:E433

    Article  CAS  Google Scholar 

  18. Dickinson AJ, Carrette LPL, Collins JA, Friedrich KA, Stimming U (2002) Electrochim Acta 47:3733

    Article  CAS  Google Scholar 

  19. Schmidt TJ, Gasteiger HA, Behm RJ (1999) J New Mater Electrochem Systems 2:27

    CAS  Google Scholar 

  20. Manzo-Robledo A, Boucher AC, Pastor E, Alonso-Vante N (2002) Fuel Cells 2:109

    Article  CAS  Google Scholar 

  21. Watanabe M, Zhu Y, Uchida H (2000) J Phys Chem B 104:1762

    Article  CAS  Google Scholar 

  22. Igarashi H, Fujino T, Zhu Y, Uchida H, Watanabe M (2001) Phys Chem Chem Phys 3:306

    Article  CAS  Google Scholar 

  23. Uchida H, Ozuka H, Watanabe M (2003) Electrochim Acta 47:3629

    Article  Google Scholar 

  24. Gasteiger HA, Markovic NM, Ross PN, Cairns EJ (1993) J Phys Chem 97:12020

    CAS  Google Scholar 

  25. Gasteiger HA, Markovic NM, Ross PN, Cairns EJ (1994) J Phys Chem 98:617

    CAS  Google Scholar 

  26. Gasteiger HA, Markovic NM, Ross PN, Jr (1995) J Phys Chem 99:8945

    CAS  Google Scholar 

  27. Wang K, Gasteiger HA, Markovic NM, Ross PN (1996) Electrochim Acta 41:2587

    Article  CAS  Google Scholar 

  28. Grgur BN, Zhuang G, Markovic NM, Ross PN, Jr (1997) J Phys Chem B 101:3910

    Article  CAS  Google Scholar 

  29. Grgur BN, Markovic NM, Ross PN (1999) J Electrochem Soc 146:1613

    Article  Google Scholar 

  30. Ross PN, Jr (1998) The science of electrocatalysis on bimetallic surfaces. In: Lipkowski J, Ross PN (eds) Electrocatalysis, chapter 2. Wiley-VCH, Heidelberg, pp 43–74

  31. Stamenkovic VR, Arenz M, Lucas CA, Gallagher ME, Ross PN, Markovic NM (2003) J Am Chem Soc 125:2736

    Article  CAS  PubMed  Google Scholar 

  32. Hayden BE, Rendall ME, South O (2003) J Am Chem Soc 125:7738

    Article  CAS  PubMed  Google Scholar 

  33. Janssen MMP, Moolhuysen J (1976) Electrochim Acta 21:861

    Article  CAS  Google Scholar 

  34. Motoo S, Shibata M, Watanabe M (1980) J Electroanal Chem 110:103

    Article  CAS  Google Scholar 

  35. Sobkowski J, Franaszczuk K, Piasecki A (1985) J Electroanal Chem 196:145

    Article  CAS  Google Scholar 

  36. Bittins-Cattaneo B, Iwasita T (1987) J Electroanal Chem 238:151

    Article  CAS  Google Scholar 

  37. Holze R, Bittins-Cattaneo B (1988) Electrochim Acta 33:353

    Article  CAS  Google Scholar 

  38. Beden B, Kadirgan F, Lamy C, Leger JM (1981) J Electroanal Chem 127:75

    Article  CAS  Google Scholar 

  39. Norton Hanner A, Ross PN (1991) J Phys Chem 95:3740

    Google Scholar 

  40. Morimoto Y, Yeager EB (1998) J Electroanal Chem 444:95

    Article  CAS  Google Scholar 

  41. Morimoto Y, Yeager EB (1998) J Electroanal Chem 444:100

    Article  Google Scholar 

  42. Lamy-Pitara E, El Quazzani-Benhima L, Barbier J, Cahoreau M, Caiso J (1994) J Electroanal Chem 372:233

    Article  CAS  Google Scholar 

  43. Xia H (1999) Electrochim Acta 45:1057

    Article  CAS  Google Scholar 

  44. Massong H, Tillmann S, Langkau T, Abd el Meguid EA, Baltruschat H (1998) Electrochim Acta 44:1379

    Article  CAS  Google Scholar 

  45. Xiao XY, Tillmann S, Baltruschat H (2002) Phys Chem Chem Phys 4:4044

    Article  CAS  Google Scholar 

  46. Santos MC, Bulhoes LOS (2003) Electrochim Acta 48:2607

    Article  CAS  Google Scholar 

  47. Vassiliev YB, Bagotzky VS, Osetrova VN, Mikhailova AA (1979) J Electroanal Chem 97:63

    Article  Google Scholar 

  48. Berenz P, Tillmann S, Massong H, Baltruschat H (1998) Electrochim Acta 43:3035

    Article  CAS  Google Scholar 

  49. Massong H, Wang H, Samjeske G, Baltruschat H (2000) Electrochim. Acta 46:701

    Article  CAS  Google Scholar 

  50. Crabb EM, Marshall R, Thompsett D (2000) J Electrochem Soc 147:4440

    Article  CAS  Google Scholar 

  51. Crabb EM, Ravikumar MK (2001) Electrochim Acta 46:1033

    Article  CAS  Google Scholar 

  52. Kaiser J, Jusys Z, Behm RJ, Moertel R, Boennemann H (2001) In: 1st European PEFC Forum. Proceedings. Lucerne, Switzerland, pp 59–62

  53. Gonzales MJ, Peters CH, Wrighton MS (2001) J Phys Chem B 105:5470

    Article  Google Scholar 

  54. Vavilova VV, Vasina SY, Safonova TY, Perii OA (1988) Electrokhimiya 24:1141

    CAS  Google Scholar 

  55. Hoster H, Iwasita T, Baumgärtner H, Vielstich W (2001) Phys Chem Chem Phys 3:337

    Article  CAS  Google Scholar 

  56. Davies JC, Hayden BE, Pegg DJ, Rendall ME (2002) Surf Sci 496:110

    Article  CAS  Google Scholar 

  57. Chrzanowski W, Wieckowski A (1997) Langmuir 13:5974

    Article  CAS  Google Scholar 

  58. Tremiliosi-Filho G, Kim H, Chrzanowski W, Wieckowski A, Grzybowska B, Kulesza P (1999) J Electroanal Chem 467:143

    Article  CAS  Google Scholar 

  59. Friedrich KA, Geyzers KP, Marmann A, Stimming U, Vogel R (1998) Z Phys Chem 208:137

    Google Scholar 

  60. Lin WF, Zei MS, Eiswirth M, Ertl G, Iwasita T, Vielstich W (1999) J Phys Chem B 103:6968

    Article  CAS  Google Scholar 

  61. Crown A, Moraes IR, Wieckowski A (2001) J Electroanal Chem 500:333

    Article  CAS  Google Scholar 

  62. Friedrich KA, Geyzers KP, Dickinson AJ, Stimming U (2002) J Electroanal Chem 524–525:261

    Google Scholar 

  63. Samjeske G, Xiao XY, Baltruschat H (2002) Langmuir 18:4659

    Article  CAS  Google Scholar 

  64. Szabo S (1984) J Electroanal Chem 172:359

    Article  CAS  Google Scholar 

  65. Campbel SA, Parsons R (1992) J Chem Soc Faraday Trans 88:833

    CAS  Google Scholar 

  66. Waszczuk P, Solla-Gullon J, Kim HS, Tong YY, Montiel V, Aldaz A, Wieckowski A (2001) J Catal 203:1

    Article  CAS  Google Scholar 

  67. Liu Z, Lin X, Lee JY, Zhang W, Han M, Gan LM (2002) Langmuir 18:4054

    Article  CAS  Google Scholar 

  68. Stalnionis G, Tamašauskaitė-Tamašiūnaitė L, Pautienienė V, Jusys Z (2004) J Solid State Electrochem, in press

  69. Bagotzky VS, Vassiliev YB, Khazova OA (1977) J Electroanal Chem 81:229

    Article  Google Scholar 

  70. Biegler T, Rand DAJ, Woods R (1971) J Electroanal Chem 29:269

    Article  CAS  Google Scholar 

  71. Angerstein-Kozlowska H, Conway BE, Sharp WBA (1973) J Electroanal Chem 43:9

    CAS  Google Scholar 

  72. Cervino RM, Tracia WE, Arvia AJ (1985) J Electrochem Soc 132:266

    CAS  Google Scholar 

  73. Cervino RM, Arvia AJ, Vielstich W (1985) Surf Sci 154:623

    Article  CAS  Google Scholar 

  74. Zinola CF, Bello C (2003) J Colloid Interface Sci 258:259

    Article  CAS  PubMed  Google Scholar 

  75. Wagner CD, Riggs WM, Davis CE, Moulder JS, Muilenberg GE (eds) (1979) In: Handbook of X-ray photoelectron spectroscopy. Perkin Elmer, Eden Praire, Minn.

  76. Jerdev DI, Koel BE (2001) Surf Sci 492:106

    Article  CAS  Google Scholar 

  77. Moina CA, Ybarra GO (2001) J Electroanal Chem 504:175

    Article  CAS  Google Scholar 

  78. Šeruga M, Metikoš-Hukovic M, Valla T, Milun M, Hoffschultz H, Wandelt K (1996) J Electroanal Chem 407:83

    CAS  Google Scholar 

  79. Mandler D, Bard AJ (1991) J Electroanal Chem 307:217

    Article  CAS  Google Scholar 

  80. Mallory GO, Hajdu B (eds) (1996) In: Electroless plating. Fundamentals and applications. American Electroplating Soc, Orlando, Fla.

Download references

Acknowledgements

The authors are indebted to A. Kaliničenko for the AFM measurements. Financial support from the Lithuanian Foundation of Science and Studies through grant No. T-540 is greatly acknowledged. G.S. is most grateful for Jerome and Isabella Karle scholarship from the World Federation of Scientists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Jusys.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stalnionis, G., Tamašauskaitė-Tamašiūnaitė, L., Pautienienė, V. et al. Modification of a Pt surface by spontaneous Sn deposition for electrocatalytic applications. J Solid State Electrochem 8, 892–899 (2004). https://doi.org/10.1007/s10008-004-0517-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-004-0517-x

Keywords

Navigation