Skip to main content
Log in

High electrocatalytic activity of carbon-supported nickel hydroxide-doped platinum nanocatalysts for BH4 electrooxidation

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this paper, carbon-supported nickel hydroxide-doped platinum (Pt/Ni(OH)2/C) nanocatalysts are synthesized by a two-step method, and the morphology and structure of Pt/Ni(OH)2/C are studied by transmission electron microscope and X-ray diffraction analysis. The electrocatalytic performance of the Pt/Ni(OH)2/C for borohydride oxidation reaction (BOR) is studied by using cyclic voltammetry, chronoamperometry, chronopotentiometry, and rotating disc electrode voltammetry. The Pt/Ni(OH)2/C catalysts show much better catalytic performance than Pt/C, and Pt(50)/Ni(OH)2(50)/C exhibits the best catalytic performance among all as-prepared Pt/Ni(OH)2/C catalysts. Moreover, the electron transfer number (n) related to BOR is evaluated, and n of 3.5 is achieved on Pt(50)/Ni(OH)2(50)/C electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Demirci UB (2007) Direct borohydride fuel cell: main issues met by the membrane–electrodes-assembly and potential solutions. J Power Sources 172(2):676–687

    CAS  Google Scholar 

  2. Ma J, Choudhury NA, Sahai Y (2010) A comprehensive review of direct borohydride fuel cells. Renew Sust Energ Rev 14(1):183–199

    CAS  Google Scholar 

  3. Li S, Yang X, Zhu H, Wei X, Liu Y (2013) Ultrafine amorphous Co–W–B alloy as the anode catalyst for a direct borohydride fuel cell. Int J Hydrog Energy 38(6):2884–2888

    CAS  Google Scholar 

  4. Pasqualeti AM, Olu P-Y, Chatenet M, Lima FHB (2015) Borohydride electrooxidation on carbon-supported noble metal nanoparticles: insights into hydrogen and hydroxyborane formation. ACS Catal 5(5):2778–2787

    CAS  Google Scholar 

  5. Molina CB, Chatenet M (2009) Direct oxidation of sodium borohydride on Pt, Ag and alloyed Pt–Ag electrodes in basic media. Part I: bulk electrodes. Electrochim Acta 54(26):6119–6129

    Google Scholar 

  6. Liu BH, Li ZP, Suda S (2004) Electrocatalysts for the anodic oxidation of borohydrides. Electrochim Acta 49(19):3097–3105

    CAS  Google Scholar 

  7. Lima FHB, Pasqualeti AM, Concha MBM, Chatenet M, Ticianelli EA (2012) Borohydride electrooxidation on Au and Pt electrodes. Electrochim Acta 84:202–212

    CAS  Google Scholar 

  8. Finkelstein DA, Mota ND, Cohen JL, Abruña HD (2009) Rotating disk electrode (RDE) investigation of BH4− and BH3OH− electro-oxidation at Pt and Au: implications for BH4− fuel cells. J Phys Chem C 113(45):19700–19712

    CAS  Google Scholar 

  9. Olu P-Y, Bonnefont A, Braesch G, Martin V, Savinova ER, Chatenet M (2018) Influence of the concentration of borohydride towards hydrogen production and escape for borohydride oxidation reaction on Pt and Au electrodes–experimental and modelling insights. J Power Sources 375:300–309

    CAS  Google Scholar 

  10. Amendola SC, Onnerud P, Kelly MT, Petillo PJ, Sharp-Goldman SL, Binder M (1999) A novel high power density borohydride-air cell. J Power Sources 84(1):130–133

    CAS  Google Scholar 

  11. Oliveira RCP, Vasić M, Santos DMF, Babić B, Hercigonja R, Sequeira CAC, Šljukić B (2018) Performance assessment of a direct borohydride-peroxide fuel cell with Pd-impregnated faujasite X zeolite as anode electrocatalyst. Electrochim Acta 269:517–525

    CAS  Google Scholar 

  12. Yang JQ, Liu BH, Wu S (2009) Carbon-supported Pd catalysts: influences of nanostructure on their catalytic performances for borohydride electrochemical oxidation. J Power Sources 194(2):824–829

    CAS  Google Scholar 

  13. Cheng K, Cao D, Yang F, Zhang D, Yan P, Yin J, Wang G (2013) Pd doped three-dimensional porous Ni film supported on Ni foam and its high performance toward NaBH4 electrooxidation. J Power Sources 242:141–147

    CAS  Google Scholar 

  14. Sanlı E, Çelikkan H, Uysal BZ, Aksu ML (2006) Anodic behavior of Ag metal electrode in direct borohydride fuel cells. Int J Hydrog Energy 31(13):1920–1924

    Google Scholar 

  15. Atwan MH, Northwood DO, Gyenge EL (2007) Evaluation of colloidal Ag and Ag-alloys as anode electrocatalysts for direct borohydride fuel cells. Int J Hydrog Energy 32(15):3116–3125

    CAS  Google Scholar 

  16. Oshchepkov AG, Braesch G, Ould-Amara S, Rostamikia G, Maranzana G, Bonnefont A, Papaefthimiou V, Janik MJ, Chatenet M, Savinova ER (2019) Nickel metal nanoparticles as anode electrocatalysts for highly efficient direct borohydride fuel cells. ACS Catal 9(9):8520–8528

    CAS  Google Scholar 

  17. Martins JI, Nunes MC, Koch R, Martins L, Bazzaoui M (2007) Electrochemical oxidation of borohydride on platinum electrodes: the influence of thiourea in direct fuel cells. Electrochim Acta 52(23):6443–6449

    CAS  Google Scholar 

  18. Duan D, Liu S, Sun Y (2012) Analysis of the kinetics of borohydride oxidation in Cu anode for direct borohydride fuel cell. J Power Sources 210:198–203

    CAS  Google Scholar 

  19. Zhang D, Cheng K, Shi N, Guo F, Wang G, Cao D (2013) Nickel particles supported on multi-walled carbon nanotubes modified sponge for sodium borohydride electrooxidation. Electrochem Commun 35:128–130

    CAS  Google Scholar 

  20. Wang G, Wang X, Miao R, Cao D, Sun K (2010) Effects of alkaline treatment of hydrogen storage alloy on electrocatalytic activity for NaBH4 oxidation. Int J Hydrog Energy 35(3):1227–1231

    CAS  Google Scholar 

  21. Balčiūnaitė A, Sukackienė Z, Tamašauskaitė-Tamašiūnaitė L, Činčienė Ž, Selskis A, Norkus (2017) CoB/Cu and PtCoB/Cu catalysts for borohydride fuel cells. Electrochim Acta 225:255–262

    Google Scholar 

  22. Yin X, Wang Q, Duan D, Liu S, Wang Y (2019) Amorphous NiB alloy decorated by Cu as the anode catalyst for a direct borohydride fuel cell. Int J Hydrog Energy 44:10971–10981

    CAS  Google Scholar 

  23. Coowar FA, Vitins G, Mepsted GO, Waring SC, Horsfall JA (2008) Electrochemical oxidation of borohydride at nano-gold-based electrodes: application in direct borohydride fuel cells. J Power Sources 175(1):317–324

    CAS  Google Scholar 

  24. Šljukić B, Milikić J, Santos DMF, Sequeira CAC, Macciò D, Saccone A (2014) Electrocatalytic performance of Pt–Dy alloys for direct borohydride fuel cells. J Power Sources 272:335–343

    Google Scholar 

  25. Duan D, Liu H, You X, Wei H, Liu S (2015) Anodic behavior of carbon supported Cu@Ag core–shell nanocatalysts in direct borohydride fuel cells. J Power Sources 293:292–300

    CAS  Google Scholar 

  26. Wang Q, Chen F, Liu Y, Zhang N, An L, Johnston RL (2017) Bifunctional electrocatalysts for oxygen reduction and borohydride oxidation reactions using Ag3Sn nanointermetallic for the ensemble effect. ACS Appl Mater Interfaces 9(41):35701–35711

    CAS  PubMed  Google Scholar 

  27. Wang J, Chen F, Jin Y, Lei Y, Johnston RL (2017) One-pot synthesis of dealloyed AuNi nanodendrite as a bifunctional electrocatalyst for oxygen reduction and borohydride oxidation reaction. Adv Funct Mater 27(23):1700260

    Google Scholar 

  28. Yang F, Cheng K, Wang G, Cao D (2015) Preparation of Au nanosheets supported on Ni foam and its electrocatalytic performance towards NaBH4 oxidation. Electrochim Acta 159:111–115

    CAS  Google Scholar 

  29. Candelaria SL, Bedford NM, Woehl TJ, Rentz NS, Showalter AR, Pylypenko S, Bunker BA, Lee S, Reinhart B, Ren Y, Ertem SP, Coughlin EB, Sather NA, Horan JL, Herring AM, Greenlee LF (2017) Multi-component Fe–Ni hydroxide nanocatalyst for oxygen evolution and methanol oxidation reactions under alkaline conditions. ACS Catal 7(1):365–379

    CAS  Google Scholar 

  30. Wang H, Li X, Lan X, Wang T (2018) Supported ultrafine NiCo bimetallic alloy nanoparticles derived from bimetal–organic frameworks: a highly active catalyst for furfuryl alcohol hydrogenation. ACS Catal 8(3):2121–2128

    CAS  Google Scholar 

  31. Ouyang L, Huang J, Wang H, Liu J, Zhu M (2017) Progress of hydrogen storage alloys for Ni-MH rechargeable power batteries in electric vehicles: a review. Mater Chem Phys 200:164–178

    CAS  Google Scholar 

  32. Zhang M, Huang Z, Shen Z, Gong Y, Chi B, Pu J, Li J (2017) High-performance aqueous rechargeable Li-Ni battery based on Ni(OH)2/NiOOH redox couple with high voltage. Adv Energy Mater 7(17):1700155

    Google Scholar 

  33. Yuan C, Wu HB, Xie Y, Lou XW (2014) Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew Chem Int Ed 53(6):1488–1504

    CAS  Google Scholar 

  34. He WX, Zhang YQ, Liang QQ, Jiang WQ, Sun HF (2015) Hydrothermal synthesis and characterization of nano-petal nickel hydroxide. Rare Metals 34(9):667–672

    CAS  Google Scholar 

  35. Chen L, Dong X, Wang Y, Xia Y (2016) Separating hydrogen and oxygen evolution in alkaline water electrolysis using nickel hydroxide. Nat Commun 7:11741

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Subbaraman R, Tripkovic D, Chang K-C, Strmcnik D, Paulikas AP, Hirunsit P, Chan M, Greeley J, Stamenkovic V, Markovic NM (2012) Trends in activity for the water electrolyser reactions on 3d M (Ni, Co, Fe, Mn) hydr (oxy) oxide catalysts. Nat Mater 11:550–557

    CAS  PubMed  Google Scholar 

  37. Diaz-Morales O, Ledezma-Yanez I, Koper MTM, Calle-Vallejo F (2015) Guidelines for the rational design of Ni-based double hydroxide electrocatalysts for the oxygen evolution reaction. ACS Catal 5(9):5380–5387

    CAS  Google Scholar 

  38. Nam JW, Kim K-D, Kim DW, Seo HO, Kim YD, Lim DC (2012) CO oxidation of bare and TiO2-coated NiO-Ni(OH)2 nanoparticles. Curr Appl Phys 12(2):429–433

    Google Scholar 

  39. Kong W, Li J, Chen Y, Ren Y, Guo Y, Niu S, Yang Y (2018) ZIF-67-derived hollow nanocages with layered double oxides shell as high-efficiency catalysts for CO oxidation. Appl Surf Sci 437:161–168

    CAS  Google Scholar 

  40. Huang W, Ma XY, Wang H, Feng R, Zhou J, Duchesne PN, Zhang P, Chen F, Han N, Zhao F, Zhou J, Cai WB, Li Y (2017) Promoting effect of Ni(OH)2 on palladium nanocrystals leads to greatly improved operation durability for electrocatalytic ethanol oxidation in alkaline solution. Adv Mater 29(37):1703057

    Google Scholar 

  41. Li C, Wen H, Tang P-P, Wen X-P, Wu L-S, Dai H-B, Wang P (2018) Effects of Ni(OH)2 morphology on the catalytic performance of Pd/Ni(OH)2/Ni foam hybrid catalyst toward ethanol electrooxidation. ACS Appl Energy Mater 1(11):6040–6046

    Google Scholar 

  42. Danilovic N, Subbaraman R, Strmcnik D, Chang KC, Paulikas A, Stamenkovic V, Markovic NM (2012) Enhancing the alkaline hydrogen evolution reaction activity through the bifunctionality of Ni(OH)2/metal catalysts. Angew Chem Int Ed 51(50):12495–12498

    CAS  Google Scholar 

  43. Yin H, Zhao S, Zhao K, Muqsit A, Tang H, Chang L, Zhao H, Gao Y, Tang Z (2015) Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity. Nat Commun 6:6430

    CAS  PubMed  Google Scholar 

  44. Zhang D, Wang B, Yang X, Zhang J, Liu Y, Wang G (2018) A binder-free paper electrode with high performance for NaBH4 oxidation. New J Chem 42:48–55

    CAS  Google Scholar 

  45. Chatenet M, Molina-Concha MB, El-Kissi N, Parrour G, Diard J-P (2009) Direct rotating ring-disk measurement of the sodium borohydride diffusion coefficient in sodium hydroxide solutions. Electrochim Acta 54(18):4426–4435

    CAS  Google Scholar 

  46. Trasatti S, Petrii OA (1992) Real surface area measurements in electrochemistry. J Electroanal Chem 327(1-2):353–376

    CAS  Google Scholar 

  47. Wang JJ, Yin GP, Zhang J, Wang ZB, Gao YZ (2007) High utilization platinum deposition on single-walled carbon nanotubes as catalysts for direct methanol fuel cell. Electrochim Acta 52(24):7042–7050

    CAS  Google Scholar 

  48. Maillard F, Martin M, Gloaguen F, Léger J-M (2002) Oxygen electroreduction on carbon-supported platinum catalysts. Particle-size effect on the tolerance to methanol competition. Electrochim Acta 47(21):3431–3440

    CAS  Google Scholar 

  49. Jing L, Zhao Q, Chen S, Yi L, Wang X, Wei W (2015) Nanoporous carbon supported platinum-copper nanocomposites as anode catalysts for direct borohydride-hydrogen peroxide fuel cell. Electrochim Acta 171:96–104

    CAS  Google Scholar 

  50. Wang G, Gao Y, Wang Z, Du C, Wang J, Yin G (2010) Investigation of PtNi/C anode electrocatalysts for direct borohydride fuel cell. J Power Sources 195(1):185–189

    CAS  Google Scholar 

  51. Gyenge E (2004) Electrooxidation of borohydride on platinum and gold electrodes: implications for direct borohydride fuel cells. Electrochim Acta 49(6):965–978

    CAS  Google Scholar 

  52. Olu P-Y, Gilles B, Job N, Chatenet M (2014) Influence of the surface morphology of smooth platinum electrodes for the sodium borohydride oxidation reaction. Electrochem Commun 43:47–50

    CAS  Google Scholar 

  53. Cheng H, Scott K (2006) Determination of kinetic parameters for borohydride oxidation on a rotating Au disk electrode. Electrochim Acta 51(17):3429–3433

    CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (21875203, 21874114), the Natural Science Foundation of Hunan Province, China (2020JJ4574) and Collaborative Innovation Center of New Chemical Technologies for Environmental Benignity and Efficient Resource Utilization.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lanhua Yi or Yebo Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, L., Wang, R., Fei, J. et al. High electrocatalytic activity of carbon-supported nickel hydroxide-doped platinum nanocatalysts for BH4 electrooxidation. Ionics 26, 5133–5141 (2020). https://doi.org/10.1007/s11581-020-03640-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03640-3

Keywords

Navigation