Skip to main content
Log in

New solid-state glass electrodes by using zinc oxide thin films as interface layer

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Novel glass electrodes for the determination of cations with reversible internal solid contact are introduced. They are based on a semiconducting zinc oxide layer with a maximum thickness of 1 µm in contact with ion selective glasses on one side and with a metal layer on the other side. The metal oxide layer is thereby generated either by ultrasonic spray pyrolysis from zinc acetate solution, by electrochemical deposition from zinc nitrate solution or by spin coating from a dispersion of ZnO in an organic binder. A following activation in a palladium chloride solution allows the chemical reductive deposition of NiP as electronic conductor. Dipping-type and flow through electrodes as well as planar glass electrodes in thick film technology fabricated in the above-mentioned method are described. In this case gold electrodes are applied by screen printing on isolated steel substrates. The zinc oxide layers, created in different manners, are covered afterwards with cation selective glasses in thick film technology. They cause a stabilisation of the half-cell potentials of the all solid state indicator electrodes proved by suitable measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Eisenman G (1967) Glass electrodes for hydrogen and other cations. Marcel Dekker, New York

    Google Scholar 

  2. Thompson MR (1932) Bur Stand J Res 9:833

    CAS  Google Scholar 

  3. Loiseleur J (1942) Ann Inst Pasteur 68:373

    CAS  Google Scholar 

  4. Krjukov PA, Krjukov AA (1937) Zavod Lab 6:619

    Google Scholar 

  5. Lengyel B. v (1931) Z Phys Chem 153:425

    Google Scholar 

  6. Voigtländer G (1963) Versuche zur Herstellung stabiler Glaselektroden. Diploma Thesis, Technische Hochschule Dresden

  7. Wolf K (1927) Collegium 688:370

    Google Scholar 

  8. Emmerich B (1978) Regelungstech Prax 20:313

    Google Scholar 

  9. Belford RE, Owen AW, Kelly RG (1987) Sens Actuators 11:387

    Article  CAS  Google Scholar 

  10. Kaden H, Vonau W (1990) Messen-Steuern-Regeln 33:312

    Google Scholar 

  11. Sultz MM, Pisarevskii AM, Volkov AM, Lepnev CE, Artmev CP, Nikolajev JM (1981) Physika i Chimia 7:426

    Google Scholar 

  12. Vonau W, Kaden H (1997) Glastech Ber (Glass Sci Technol) 70:155

    CAS  Google Scholar 

  13. Metz A (1970) US Patent 3:498–901

    Google Scholar 

  14. Noll A, Rudolf V, Grabner EW (1998) Electrochim Acta 44:415

    Article  CAS  Google Scholar 

  15. Vonau W, Gabel J, Jahn H (2005) Electrochim Acta 50:4981

    Article  CAS  Google Scholar 

  16. Jahn H, Kaden H (2004) Microchim Acta 146:173

    Article  CAS  Google Scholar 

  17. Vonau W, Guth U (2006) J Solid State Electrochem 10:746

    Article  CAS  Google Scholar 

  18. Yoshiki H, Alexandruk V, Hashimoto K, Fujishima A (1994) J Electrochem Soc 141:L56

    Article  CAS  Google Scholar 

  19. Sun RD, Tryk DA, Hashimoto K, Fujishima A (1998) J Electrochem Soc 145:3378

    Article  CAS  Google Scholar 

  20. Reinecke M, Spindler J, Berthold F, Vonau W (2002) Metalloberfläche 56:20

    CAS  Google Scholar 

  21. Beyer W, Hüpkes J, Stiebig H (2007) Thin Solid Films 516:147

    Article  CAS  Google Scholar 

  22. Shinde VR, Gujar TP, Lokhande CD (2007) Sens Actuators B 120:551

    Article  Google Scholar 

  23. Soki T, Hatanaka Y, Look DC (2000) Appl Phys Lett 76:3257

    Article  Google Scholar 

  24. Caporaletti O (1982) Sol Eng Mater 7:65

    Article  CAS  Google Scholar 

  25. Chernets AN, Kenigsberg NL (1973) Thin Solid Films 18:247

    Article  CAS  Google Scholar 

  26. Nunes P, Fernandes B, Fortunato E, Vilarinho P, Martins R (1999) Thin Solid Films 337:176

    Article  CAS  Google Scholar 

  27. Miki-Yoshida M, Collins-Martinez V, Amézaga-Madrid P, Aguilar-Elguézabal A (2002) Thin Solid Films 419:60

    Article  CAS  Google Scholar 

  28. Ashour A, Kaid MA, El-Sayed NZ, Ibrahim AA (2006) Applied Surface Science 252:7844

    Article  CAS  Google Scholar 

  29. Izaki M, Omi T (1996) Appl Phys Lett 68:2439

    Article  CAS  Google Scholar 

  30. Gao F, Naik SP, Sasaki Y, Okubo T (2006) Thin Solid Films 495:68

    Article  CAS  Google Scholar 

  31. NORM DIN 19262 11.1986 Steckbuchse und Stecker geschirmt für pH-Elektroden

  32. Vonau W, Enseleit U, Kretzschmar C, Otschik P, Große M, Woithe W (2000) Mittweida Scientific Reports. J Univ Appl Sci Mittweida, Bd. I: Moderne Verfahren der Oberflächentechnik 13:25

    Google Scholar 

  33. NORM DIN 58196 07.1995 Dünne Schichten für die Optik - Teil 6: Prüfung der Haftfestigkeit mit einem Klebeband

  34. Schmidt-Mende L, MacManus-Driscoll JL (2007) Materials Today 10/5:40

    Article  Google Scholar 

Download references

Acknowledgements

The present work was supported by the ‘Arbeitsgemeinschaft industrieller Forschungsvereinigungen’ (AiF 14555 BR) with funds of the Federal Ministry of Economics and Technology (BMWi). First donee: Deutsche Gesellschaft für Galvano- und Oberflächentechnik (DGO)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Vonau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vonau, W., Gerlach, F., Enseleit, U. et al. New solid-state glass electrodes by using zinc oxide thin films as interface layer. J Solid State Electrochem 13, 91–98 (2009). https://doi.org/10.1007/s10008-008-0573-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-008-0573-8

Keywords

Navigation