Skip to main content
Log in

Synthesizing Zinc Sulfide Films on the Gold Surface as the Sensor for Electrochemical Quartz Crystal Microbalance

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

A zinc sulfate film is deposited from aqueous solutions of zinc sulfate onto the gold surface with the aim of preparation of a sensor for electrochemical quartz crystal microbalance (EQCM). The kinetics of this process, the particles formed in solution, and the film itself are studied by the methods of electrochemical quartz crystal microbalance, X-ray photoelectron spectroscopy, transmission electron microscopy, atomic force microscopy, optical and Raman spectroscopies, and dynamic light scattering. The effect of the procedure of gold surface preparation, the reagent concentration, and the temperature on the film adhesion, the length of induction period, the kinetics of film growth, and its structure and thickness are studied. It is shown that the film formation proceeds as a result of deposition of sufficiently coarse 200–700 nm colloid particles of sphalerite. It is demonstrated that this sensor can be used in studying the electrochemical reactions of ZnS and the interface phenomena by the methods of EQCM and cyclic voltammetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Tyrakowski, C.M. and Snee, P.T., Ratiometric CdSe/ZnS quantum dot protein sensor, Anal. Chem., 2014, vol. 86, p. 2380.

    Article  PubMed  CAS  Google Scholar 

  2. Dehghani, Z., Nazerdeylami, S., Saievar-Iranizad, E., and Majles Ara, M.H., Synthesis and investigation of nonlinear optical properties of semiconductor ZnS nanoparticles, J. Phys. Chem. Solids., 2011, vol. 2, p. 1008.

    Article  ADS  Google Scholar 

  3. Borah, J.P. and Sarma, K.C., Optical and optoelectronic properties of ZnS nanostructured thin film, Acta Phys. Pol., A, 2008, no. 4, vol. 114, p. 713.

    Article  ADS  CAS  Google Scholar 

  4. Ke, W., Stoumpos, C.C., Logsdon, J.L., Wasielewski, M.R., Yan, Y., Fang, G., and Kanatzidis M.G., TiO2–ZnS cascade electron transport layer for efficient formamidinium tin iodide perovskite solar cells, J. Am. Chem. Soc., 2016, vol. 138, p. 14998.

    Article  PubMed  CAS  Google Scholar 

  5. Mikhlin, Y., Karacharov, A., Vorobyev, S., Romanchenko, A., Likhatski, M., Antsiferova, S., and Markosyan, S., Towards understanding the role of surface gas nanostructures: Effect of temperature difference pretreatment on wetting and flotation of sulfide minerals and Pb–Zn ore, Nanomaterials, 2020, vol. 10, p. 1362.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Mikhlin, Yu., Karacharov, A., Tomashevich, Ye., and Shchukarev, A., Interaction of sphalerite with potassium n-butyl xanthate and copper sulfate solutions studied by XPS of fast-frozen samples and zeta-potential measurement, Vacuum, 2016, vol. 125, p. 98.

    Article  ADS  CAS  Google Scholar 

  7. Ahlberg, E. and Asbjornsson J., Carbon paste electrodes in mineral processing: an electrochemical study of sphalerite, Hydrometallurgy, 1994, vol. 36, p. 19.

    Article  CAS  Google Scholar 

  8. Zhuo, C. and Roe-Hoan, Y., Electrochemistry of copper activation of sphalerite at pH 9.2, Int. J. Miner. Process., 2000, vol. 58, p. 57.

    Article  Google Scholar 

  9. Teng, F., Liu, Q., and Zeng, H., In situ kinetic study of zinc sulfide activation using a quartz crystal microbalance with dissipation (QCM-D), J. Colloid Interface Sci., 2012, vol. 368, no. 1, p. 512.

    Article  ADS  PubMed  CAS  Google Scholar 

  10. O’Brien, P. and McAleese, J., Developing an understanding of the processes controlling the chemical bath deposition of ZnS and CdS, J. Mater. Chem., 1998, vol. 8, no. 11, p. 2309.

    Article  Google Scholar 

  11. Doña, J.M., Process and film characterization of chemical-bath-deposited ZnS thin films, J. Electrochem. Soc., 1994, vol. 141, no. 1, p. 205.

    Article  ADS  Google Scholar 

  12. Hodes, G., Chemical solution deposition of semiconductor films, New York: Marcel Dekker, 2002.

    Book  Google Scholar 

  13. Agawane, G.L., Kim, S.S., Sung, M., Suryawanshi, M.P., Gurav, K.V., Moholkar, A.V., Lee, J. Y., Ho, Y.J., Patil, P.S., and Hyeok, K.J., Green route fast synthesis and characterization of chemical bath deposited nanocrystalline ZnS buffer layers, Curr. Appl. Phys., 2003, vol. 13, no. 5, p. 850.

    Article  ADS  Google Scholar 

  14. Akhtar, M.S., Malik, M.A., Riaz, S., Naseem, S., and O’Brien, P., Optimising conditions for the growth of nanocrystalline ZnS thin films from acidic chemical baths, Mater. Sci. Semicond. Process., 2015, vol. 30, p. 292.

    Article  CAS  Google Scholar 

  15. Bayer, A., Boyle, D.S., and O’Brien, P., In situ kinetic studies of the chemical bath deposition of zinc sulfide from acidic solutions, 2002, J. Mater. Chem., 2002, vol. 12, p. 2940.

    Article  CAS  Google Scholar 

  16. Sauerbrey, G., Verwendung von schwingquarzen zur wägung dünner schichten und zur mikrowägung, Z. Phys., 1959, vol. 55, no. 2, p. 206.

    ADS  Google Scholar 

  17. Hinsberg, W.D., Willson, C.G., and Kanazawa, K.K., Measurement of thin-film dissolution kinetics using a quartz crystal microbalance, J. Electrochem. Soc., 1986, p. 1448.

  18. Mengsu, Y., Thompson, M., and Duncan-Hewitt, W.C., Interfacial properties and the response of the thickness-shear-mode acoustic wave sensor in liquids, Langmuir, 1993, vol. 9, no. 3, p. 802.

    Article  Google Scholar 

  19. Cheng, Y.C., Jin, C.Q., and Gao, F., Raman scattering study of zinc blende and wurtzite ZnS, J. Appl. Phys., 2009, vol. 106, p. 123505.

    Article  ADS  Google Scholar 

  20. Mikhlin, Y., X-ray photoelectron spectroscopy in mineral processing studies, Appl. Sci., 2020, vol. 10, p. 5138.

    Article  CAS  Google Scholar 

  21. Doyle, R.L. and Lyons, M.E.G., The mechanism of oxygen evolution at superactivated gold electrodes in aqueous alkaline solution, J. Solid State Electrochem., 2014, vol. 18, p. 3271.

    Article  CAS  Google Scholar 

  22. Adžić, R.R., Strbac, S., and Anastasijević, N., Electrocatalysis of oxygen on single crystal gold electrodes, Mater. Chem. Phys., 1989, vol. 22, no. 3–4, p. 349.

    Article  Google Scholar 

  23. Burke, L.D., Ahern, A.J., and O’Mullane, A.P., High energy states of gold and their importance in electrocatalytic processes at surfaces and interfaces, Gold Bull., 2002, vol. 35/1, p. 3.

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by the Russian Scientific Foundation (grant no. 18-17-00135.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. O. Krinitsyn or A. S. Romanchenko.

Ethics declarations

The authors declare that there is no conflict of interest.

Additional information

Translated by T. Safonova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krinitsyn, D.O., Romanchenko, A.S., Vorob’ev, S.A. et al. Synthesizing Zinc Sulfide Films on the Gold Surface as the Sensor for Electrochemical Quartz Crystal Microbalance. Russ J Electrochem 57, 1157–1163 (2021). https://doi.org/10.1134/S1023193521120041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193521120041

Keywords:

Navigation