Skip to main content
Log in

Layer-by-layer self-assembled conducting polymer films at elevated pressure investigated by surface plasmon spectroscopy with electrochemistry

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Polyaniline/sulfonated polyaniline (PANI/SPANI) multilayer films were fabricated using the layer-by-layer (LbL) technique. The electrochemical and optical properties of the film at elevated pressure were investigated by high-pressure surface plasmon spectroscopy combined with electrochemistry. Cyclic voltammograms of the PANI/SPANI films were performed at different hydrostatic pressure. It was found that the charge transfer currents decrease with elevated pressure. This indicates that the film becomes more compact with increasing hydrostatic pressure, which is confirmed by surface plasmon spectra, hinting at a substantial increase in the optical density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Knoll W (1998) Annu Rev Phys Chem 49:569

    Article  CAS  Google Scholar 

  2. Davies J, Faulkner I (1996) In: Davies J (ed) Surface plasmon resonance—theory and considerations. Surface analytical techniques for probing biomaterial processes. CRC, Boca Raton, Florida

    Google Scholar 

  3. Jakob T, Knoll W (2003) J Electroanal Chem 543:51

    Article  CAS  Google Scholar 

  4. Jakob T, Kleideiter G, Knoll W (2004) Int J Polym Anal Charact 9:153

    Article  CAS  Google Scholar 

  5. Baba A, Kleideiter G, Jakob T, Knoll W (2004) Macromol Chem Phys 205:2267

    Article  CAS  Google Scholar 

  6. Drickamer HG (1992) High pressure chemistry, biochemistry and materials science. In: Winter R, Jonas J (eds) NATO ASI Series, p 67

  7. Mikat J, Orgzall I, Hochheimer HD (2001) Synth Met 116:167

    Article  CAS  Google Scholar 

  8. Mikat J (2001) Synth Met 119:649

    Article  CAS  Google Scholar 

  9. Mikat J, Orgzall I, Hochheimer HD (2002) Phys Rev B 65:174202

    Article  CAS  Google Scholar 

  10. Lundin A, Lundberg B, Sauerer W, Nandery P, Naegele D (1990) Synth Met 39:233

    Article  CAS  Google Scholar 

  11. Maddison DS, Tansley TS (1992) J Appl Phys 71:1831

    Article  CAS  Google Scholar 

  12. Orgzall I, Lorenz B, Dunsch L, Bartl A, Ting S, Hor PH, Hochheimer HD (1996) Synth Met 81:59

    Article  CAS  Google Scholar 

  13. Lundberg B, Salaneck WR, Lundstroem I (1987) Synth Met 21:143

    Article  CAS  Google Scholar 

  14. Bao XB, Liu CX, Pahol, PK, Pinto NJ (1999) Synth Met 106:107

    Article  CAS  Google Scholar 

  15. Decher G (1997) Science 277:1232

    Article  CAS  Google Scholar 

  16. Tian S, Baba A, Liu J, Wang ZH, Knoll W, Park MK, Advincula R (2003) Adv Funct Mater 13:473

    Article  CAS  Google Scholar 

  17. Ferreira M, Cheung JH, Rubner MF (1994) Thin Solid Films 244:806

    Article  CAS  Google Scholar 

  18. Ferreira M, Rubner MF (1995) Macromolecules 28:7107

    Article  CAS  Google Scholar 

  19. Cheung JH, Stockton WB, Rubner MF (1997) Macromolecules 30:2712

    Article  CAS  Google Scholar 

  20. Schlenoff JB, Laurent D, Ly H, Stepp J (1998) Adv Mater 10:347

    Article  CAS  Google Scholar 

  21. Mai X, Moshrefzadeh R, Gibson UJ, Stegeman GI, Seaton CT (1985) Appl Opt 24:3155

    Article  CAS  Google Scholar 

  22. Kambhampati DK, Jakob TAM, Robertson JW, Cai M, Pemberton JE, Knoll W (2001) Langmuir 17:1169

    Article  CAS  Google Scholar 

  23. Kleideiter G, Sekkat Z, Kreiter M, Lechner M, Knoll W (2000) J Mol Struct 521:167

    Article  CAS  Google Scholar 

  24. Baba A, Park M, Advincula RC, Knoll W (2002) Langmuir 18:4648

    Article  CAS  Google Scholar 

  25. Advincula R, Frank, CW, Roitman D, Sheats J, Moon R, Knoll W (1998) Mol Cryst Liq Cryst 316:103

    CAS  Google Scholar 

  26. Mark H, Rubinson JF (1999) Conducting polymer films as electrodes. In: Wieckowski A (ed) Interfacial electrochemistry; principles and applications. Marcel Dekker, New York, p 839

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Drs. Akira Baba and Thomas Jakob (both NUS) for their support in the layer-by-layer fabrication process and in High Pressure SPS, respectively. Dr. Jinghua Teng (IMRE) is gratefully acknowledged for providing admission to the laser holographic grating setup.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Schweiss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, N., Schweiss, R. & Knoll, W. Layer-by-layer self-assembled conducting polymer films at elevated pressure investigated by surface plasmon spectroscopy with electrochemistry. J Solid State Electrochem 11, 451–456 (2007). https://doi.org/10.1007/s10008-006-0172-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-006-0172-5

Keywords

Navigation