Skip to main content

Advertisement

Log in

Optical and Morphological Properties of Electropolymerized Semiconductor Polyaniline Thin Films: Effect of Thickness

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Electronic conductive polymers have aroused considerable research interest for their possible use in different technologically relevant applications, such as modified electrodes for electrocatalysis, energy storage devices, corrosion and sensors. Thin films of polyaniline (PAni) have been deposited on indium tin oxide substrate by electropolymerization using cyclic voltammetry. The thickness of thin films has been varied between 0.1 µm and 7 µm by controlling the number of cycles. The deposited thin films were characterized to investigate the morphological and optical properties with scanning electron microscopy (SEM), photoluminescence spectroscopy, UV–Vis spectroscopy and electrochemical spectroscopy impedance. The SEM micrographs revealed that the thin films possess porous structure with an assembly of numerous fibers. The morphology of thin films observed to vary with the number of cycles during the electropolymerization of aniline. Photoluminescence spectra show a broad peak around 373 nm due to inter-band transition between polaronic and π bands. The optical band gap value was observed to vary from 2.58 eV to 2.31 eV as a function of film thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Goswami, S. Sahoo, A. K. Meikap, and R. Ghosh, in IEEE International Conference on Nanoscience Engineering and Technology, (2011), pp.314–318.

  2. A. Rahy, M. Sakrout, S. Manohar, S.J. Cho, J. Ferraris, and D.J. Yang, Chem. Mater. 20, 4808 (2008).

    Article  CAS  Google Scholar 

  3. P. Chandrsekhar, CConducting Polymers. Fundamentals and Applications: Apractical Approach (Boston: Kluwer Academic publishers, 1999).

    Book  Google Scholar 

  4. J. Han, L. Li, and R. Guo, Macromolecules 43, 10636 (2010).

    Article  CAS  Google Scholar 

  5. Y.Z. Liao, C. Zhang, X. Wang, X.G. Li, S.J. Ippolito, K. Kalantar-Zadeh, and R.B. Kaner, J. Phys. Chem. C 115, 16187 (2011).

    Article  CAS  Google Scholar 

  6. Y. Liang, L. Gu, X. Liu, Q. Yang, H. Kajiura, Y. Li, T. Zhou, and G. Shi, Chem. Eur. J. 17, 5989 (2011).

    Article  CAS  Google Scholar 

  7. C.O. Baker, B. Shedd, P.C. Innis, P.G. Whitten, G.M. Spinks, G.G. Wallace, and R.B. Kaner, Adv. Mater. 20, 155 (2008).

    Article  CAS  Google Scholar 

  8. J. Huang, S. Virji, B.H. Weiller, and R.B. Kaner, Chem. Eur. J. 10, 1315 (2004).

    Article  CAS  Google Scholar 

  9. Y.Z. Liao, C. Zhang, Y. Zhang, V. Strong, J. Tang, X.G. Li, and R.B. Kaner, Nano Lett. 11, 954 (2011).

    Article  CAS  Google Scholar 

  10. J.D. Fowler, S. Virji, R.B. Kaner, and B.H. Weiller, J. Phys. Chem. 113, 6444 (2009).

    CAS  Google Scholar 

  11. M. Zhao, X.M. Wu, and C.X. Cai, J. Phys. Chem. C 113, 4987 (2009).

    Article  CAS  Google Scholar 

  12. C.O. Baker, B. Shedd, R.J. Tseng, A.A. Martinez-Morales, C.S. Ozkan, M. Ozkan, Y. Yang, and R.B. Kaner, ACS Nano 5, 3469 (2011).

    Article  CAS  Google Scholar 

  13. R.J. Tseng, J.X. Huang, J. Ouyang, R.B. Kaner, and Y. Yang, Nano Lett. 5, 1077 (2005).

    Article  CAS  Google Scholar 

  14. J. Wang, X. Qi, F. Meng, Y. Ning, S. Chen, D. Pang, and Y. Wen, J. Phys. Chem. C 113, 1459 (2009).

    Article  CAS  Google Scholar 

  15. M.N. Hyder, S.W. Lee, F.C. Cebeci, D.J. Schmidt, Y. Shao-Horn, and P.T. Hammond, ACS Nano 5, 8552 (2011).

    Article  CAS  Google Scholar 

  16. H. Guan, L.Z. Fan, H.C. Zhang, and X. Qu, Electrochim. Acta 56, 964 (2010).

    Article  CAS  Google Scholar 

  17. Y. Cao, and T.E. Mallouk, Chem. Mater. 20, 5260 (2008).

    Article  CAS  Google Scholar 

  18. H.R. Ghenaatian, M.F. Mousavi, and M.S. Rahmanifar, Synth. Met. 161, 2017 (2011).

    Article  CAS  Google Scholar 

  19. H.K. Choudhary, S.P. Pawar, R. Kumar, A.V. Anupama, S. Bose, and B. Sahoo, ChemistrySelect 2, 830 (2017).

    Article  Google Scholar 

  20. H.K. Choudhary, R. Kumar, S.P. Pawar, A.V. Anupama, S. Bose, and B. Sahoo, ChemistrySelect 3, 2120 (2018).

    Article  CAS  Google Scholar 

  21. H.K. Choudhary, R. Kumar, S.P. Pawar, S. Bose, and B. Sahoo, J. Electron. Mater. 49, 1618 (2020).

    Article  CAS  Google Scholar 

  22. Z. Xinyu, J.G. Warren, and K.M. Sanjeev, J. Am. Chem. Soc. 26, 4502 (2004).

    Google Scholar 

  23. K. Gopalakrishnan, M. Elango, and M. Thamilselvan, Arch. Phys. Res. 3, 315 (2012).

    CAS  Google Scholar 

  24. I.D. Sharmaa, P.K. Sainib, and V.K. Sharmaa, Indian J. Eng. Mater. Sci. 20, 145 (2013).

    Google Scholar 

  25. O. Belgherbi, D. Chouder, and M.A. Saeed, Optik 171, 589 (2018).

    Article  CAS  Google Scholar 

  26. Q. Hao, W. Lei, X. Xia, Z. Yan, X. Yang, L. Lu, and X. Wang, Electrochim. Acta 5, 632 (2010).

    Article  CAS  Google Scholar 

  27. C.C. Hu, and C.H. Chu, J. Electroanal. Chem. 503, 105 (2001).

    Article  CAS  Google Scholar 

  28. A.B. Rohom, P.U. Londhe, S.K. Mahapatra, and N. Chaure, High Perform. Polym. 26, 641 (2014).

    Article  CAS  Google Scholar 

  29. D. Srivastava, and R.K. Shukla, Proc. Natl. Acad. Sci. India. Sect. A Phys. Sci. 90, 309 (2019).

    CAS  Google Scholar 

  30. D.K. Bandgar, G.D. Khuspe, R.C. Pawar, C.S. Lee, and V.B. Patil, Appl. Nanosci. 4, 27 (2012).

    Article  CAS  Google Scholar 

  31. M. Adachi, J. Jiu, and S. Isoda, Curr. Nanosci. 3, 285 (2007).

    Article  CAS  Google Scholar 

  32. L.U. Okoli, A.J. Ekpunobi, and J.O. Ozuomba, Dig. J. Nanomater. Bios. 6, 1929 (2011).

    Google Scholar 

  33. Z.S. Ali, and A.M. Shano, J. Electron. Mater. 49, 5528 (2020).

    Article  CAS  Google Scholar 

  34. L. Yesappa, M. Niranjana, C. Sharanappa, S.P. Ashokkumar, S. Raghu, H. Vijeth, and H. Devendrappa, J. Electron. Mater. 46, 6965 (2017).

    Article  CAS  Google Scholar 

  35. A. Kumar, R. Kumar, N. Verma, A.V. Anupama, H.K. Choudhary, R. Philip, and B. Sahoo, Opt. Mater. 108, 110163 (2020).

    Article  CAS  Google Scholar 

  36. O.A. Nunoo, J.A. Awuah, E.K.K. Abavare, and K. Singh, IJARET 10, 157 (2019).

    Google Scholar 

  37. S.P. Ashokkumar, H. Vijeth, L. Yesappa, M. Niranjana, M. Vandana, and H. Devendrappa, Inorg. Chem. Commun. 115, 107865 (2020).

    Article  CAS  Google Scholar 

  38. R. Kumar, A. Kumar, N. Verma, R. Philip, and B. Sahoo, PCCP 22, 27224 (2020).

    Article  CAS  Google Scholar 

  39. R. Kumar, A. Kumar, N. Verma, V. Khopkar, R. Philip, and B. Sahoo, ACS Appl. Nano Mater. 3, 8618 (2020).

    Article  CAS  Google Scholar 

  40. R. Kumar, A. Kumar, N. Verma, R. Philip, and B. Sahoo, J. Alloys Compd. 849, 156665 (2020).

    Article  CAS  Google Scholar 

  41. L.N. Mahour, H.K. Choudhary, R. Kumar, A.V. Anupama, and B. Sahoo, Ceram. Int. 45, 24625 (2019).

    Article  CAS  Google Scholar 

  42. S.P. Ashokkumar, H. Vijeth, L. Yesappa, and H. Devendrappa, in AIP Conference Proceedings (2020), pp. 080071 (1-4).

  43. D.H. Ninh, T. Thao, P.D. Long, and N.N. Dinh, Open J. Org. Polym. Mater. 6, 30 (2016).

    Article  CAS  Google Scholar 

  44. S.G. Pawar, S.L. Patil, M.A. Chougule, S.N. Achary, and V.B. Patil, Int. J. Polym. Mater. 60, 244 (2011).

    Article  CAS  Google Scholar 

  45. D.S. Dhawale, R.R. Salunkhe, V.S. Jamadade, D.P. Dubal, S.M. Pawar, and C.D. Lokhande, Curr. Appl. Phys. 10, 904 (2010).

    Article  Google Scholar 

  46. A. Joshi Rajesh, Int. Res. J. Sci. Eng. 4, 51 (2016).

    Google Scholar 

  47. W.S. Huang, and A.G. MacDiarmid, Polymer 34, 1833 (1993).

    Article  CAS  Google Scholar 

  48. N.M. Khusayfan, and M.M. El-Nahass, Adv. Condens. Matter. Phys. 2013, 1 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Belgherbi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belgherbi, O., Seid, L., Lakhdari, D. et al. Optical and Morphological Properties of Electropolymerized Semiconductor Polyaniline Thin Films: Effect of Thickness. J. Electron. Mater. 50, 3876–3884 (2021). https://doi.org/10.1007/s11664-021-08896-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08896-7

Keywords

Navigation