Skip to main content
Log in

The effects of ultrasound on the direct electrosynthesis of solid K2FeO4 and the anodic behaviors of Fe in 14 M KOH solution

  • Original paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The effects of ultrasound on the direct electrosynthesis of solid K2FeO4 and the anodic behaviors of pure iron were investigated, and the physical properties of samples were characterized by means of X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy. The experimental results showed that the existence of ultrasound can decrease the formation potential of ferrate(VI) and the passivation extent of iron anode, and this leads to higher current efficiency for the direct electrosynthesis of solid ferrate(VI) at 65 °C in 14 M KOH solution. It was also found that, in the experimental scope suitable ultrasonic power (14.6 W), shorter electrolysis duration and smaller electrolysis current can improve the apparent current efficiency of the electrosynthesis, and the largest current efficiency under suitable experimental conditions reached 77.2%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sharma VK (2002) Adv Environ Res 6:143

    Article  CAS  Google Scholar 

  2. Delaude L, Laszlo P (1996) J Org Chem 61:6360

    Article  PubMed  CAS  Google Scholar 

  3. Licht S, Wang BH, Ghosh S (1999) Science 285:1039

    Article  PubMed  CAS  Google Scholar 

  4. Licht S, Wang BH, Xu G, Li J, Naschitz V (1999) Electrochem Commun 1:527

    Article  CAS  Google Scholar 

  5. Yang WH, Wang JM, Pan T, Xu JJ, Zhang JQ, Cao CN (2002) Electrochem Commun 4:710

    Article  CAS  Google Scholar 

  6. Licht S, Tel-Vered R, Halperin L (2004) J Electrochem Soc 151:A31

    Article  CAS  Google Scholar 

  7. Licht S, Tel-Vered R (2004) Chem Commun 628

  8. Licht S, Naschitz V, Ghosh S (2002) J Phys Chem B 106:5947

    Article  CAS  Google Scholar 

  9. Licht S, Naschitz V, Rozen D, Halperin N (2004) J Electrochem Soc 151:A1147

    Article  CAS  Google Scholar 

  10. Bouzek K, Schmidt MJ, Wragg AA (1999) Electrochem Commun 1:370

    Article  CAS  Google Scholar 

  11. Bouzek K, Lipovska M, Schmidt MJ (1998) Electrochim Acta 44:547

    Article  CAS  Google Scholar 

  12. Bouzek K, Schmidt MJ, Wragg AA (1999) J Chem Technol Biotechnol 74:1188

    Article  CAS  Google Scholar 

  13. Lapicque F, Valentin G (2002) Electrochem Commun 4:764

    Article  CAS  Google Scholar 

  14. Denvir A, Pletcher D (1996) J Appl Electrochem 26:815

    Article  CAS  Google Scholar 

  15. Koninck MD, Belanger D (2003) Electrochim Acta 48:1435

    Article  CAS  Google Scholar 

  16. He WC, Wang JM, Shao HB, Zhang JQ, Cao CN (2005) Electrochem Commun 7:607

    Article  CAS  Google Scholar 

  17. Jiang JQ, Lloyd B (2002) Water Res 36:1397

    Article  PubMed  CAS  Google Scholar 

  18. Kowalska E, Mizera J (1971) Ultrasonics 9(2):81

    Article  CAS  Google Scholar 

  19. Alkire RC, Stephen P (1983) Corros Sci 23(10):1121

    Article  CAS  Google Scholar 

  20. Perusich SA, Alkire RC (1991) J Electrochem Soc 138(3):708

    Article  CAS  Google Scholar 

  21. Walton DJ, Phull SS (1996) In: Mason TJ (ed) Advances in sonochemistry, vol 4. Elsevier, p 205

  22. Doche ML, Hihn JY, Touyeras F, Lorimer JP, Mason TJ, Plattes M (2001) Ultrason Sonochem 8:219

    Google Scholar 

  23. Sáez V, García JG, Iniesta J, Ferrer AF, Aldaz A (2004) Electrochem Commun 6:757

    Article  CAS  Google Scholar 

  24. Walton DJ, Phull SS, Geissler U, Chyla A, Durham A, Ryley S, Mason TJ, Lorimer JP (2000) Electrochem Commun 2:431

    Article  CAS  Google Scholar 

  25. Doche ML, Hihn JY, Mandroyan X, Viennet R, Touyeras F (2003) Ultrason Sonochem 10:357

    Article  PubMed  CAS  Google Scholar 

  26. Schreyer JM, Thompson GW, Ockerman LT (1950) Anal Chem 22:1426

    Article  CAS  Google Scholar 

  27. Mason TJ, Lorimer JP, Bates DM (1992) Ultrasonics 30:40

    Article  CAS  Google Scholar 

  28. Contamine RF, Wilhelm AM, Berlan J, Delmas H (1995) Ultrason Sonochem 2(1):S43

    Article  Google Scholar 

  29. Compton RG, Eklund JC, Marken F (1997) Electroanalysis 9(7):509

    Article  CAS  Google Scholar 

  30. Licht S, Tel-Vered R, Halperin L (2002) Electrochem Commun 4:933

    Article  CAS  Google Scholar 

  31. Audette RJ, Quail JW, Black WH, Robertson BE (1973) J Solid State Chem 8:43

    Article  CAS  Google Scholar 

  32. Beck F, Kaus R, Oberst M (1985) Electrochim Acta 30:173

    Article  CAS  Google Scholar 

  33. Bouzek K, Raušar I, Bergmann H, Hertwig K (1997) J Electroanal Chem 425:125

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Approval no. 50172041). The authors also gratefully acknowledge the financial support of Chinese State Key Laboratory for Corrosion and Protection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianming Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Z., Wang, J., Mao, W. et al. The effects of ultrasound on the direct electrosynthesis of solid K2FeO4 and the anodic behaviors of Fe in 14 M KOH solution. J Solid State Electrochem 11, 413–420 (2007). https://doi.org/10.1007/s10008-006-0163-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-006-0163-6

Keywords

Navigation