Skip to main content
Log in

Template synthesis and electrotransport behavior of polymer composites based on perfluorinated membranes incorporating polyaniline

  • Original paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A method of chemical template synthesis is described for producing composites based on a perfluorinated matrix with polyaniline chains implanted. It has been shown that the choice of experimental and conditioning techniques is relevant for the composites’ investigation. The conductivity, diffusion permeability, selectivity, and electroosmotic permeability of the composites have been investigated in comparison with the same properties of the initial MF-4SC membrane. A model describing the transport behavior of the composites in the doped state as a fibrous-cluster system is proposed. A set of transport and structural parameters of the composites in a H2SO4 solution has been calculated and an analysis of the results observed has been carried out. The set of electrotransport properties is explained by the morphological features of the composites, taking into account the redox heterogeneity of polyaniline. The contribution of electron conductivity to the mixed conductivity of composites with a certain saturation degree by polyaniline has been estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Poole CP, Owens FJ (2003) Introduction to nanotechnology. Wiley-Interscience, New York

    Google Scholar 

  2. Tarasevich MR, Khrushcheva EI (1990) Elektrochimiya polymerov (the electrochemistry of polymers). Nauka, Moscow

  3. Pomogailo AD, Rozenberg AS, Uflyand IE (2000) Nanochasticy metallov v polymerakh (Nanosized metal particles in polymers). Khimiya, Moscow

  4. Pomogailo AD (2002) Russ Chem J 46:64 (in Russian)

  5. Timonov AM, Vasil’eva SV (2000) Soros Educ J 6:33 (in Russian)

    Google Scholar 

  6. Kazarinov VE, Pisarevskaya Å Yu, Ovsyannikova EV, Levi MD, Alpatova NM (1995) Russ J Electrochem 31:879

    CAS  Google Scholar 

  7. Sata T, Sata T, Yang W (2002) J Membr Sci 206:31

    Article  CAS  Google Scholar 

  8. Heitner-Wirguin C (1996) J Membr Sci 120:1

    Article  CAS  Google Scholar 

  9. Tishchenko G, Rosova E, Elyashevich GK, Bleha M (2000) Chem Eng J 79:211

    Article  CAS  Google Scholar 

  10. Tan S, Belanger D (2005) J Phys Chem B 109:23480

    Article  CAS  Google Scholar 

  11. Nagasubramanian G, Di Stefano S, Moacanin J (1986) J Phys Chem 90:4447

    Article  CAS  Google Scholar 

  12. Ali Shah A-ul-H, Holze R (2005) J Solid State Electrochem (in press) (DOI 10.1007/s10008-005-0064-0)

  13. Hsu C-H (1991) Synth Met 41:671

    Article  CAS  Google Scholar 

  14. Elyashevich GK, Lavrentyev VK, Kuryndin IS, Yu RE (2001) Synth Met 119:277

    Article  CAS  Google Scholar 

  15. Sata T, Funakoshi T, Akai K (1996) Macromolecules 29:4029

    Article  CAS  Google Scholar 

  16. Shigehara K, Hara M, Yamada A (1987) Synth Met 18:721

    Article  CAS  Google Scholar 

  17. Hirai T, Kuwabata S, Yoneyama H (1988) J Electrochem Soc 135:1132

    Article  CAS  Google Scholar 

  18. Orata D, Buttry DA (1988) J Electroanal Chem 257:71

    Article  CAS  Google Scholar 

  19. Teragishi Y, Aoki K (1999) J Electroanal Chem 473:132

    Article  CAS  Google Scholar 

  20. Andreev VN (2001) Russ J Electrochem 37:605

    Article  CAS  Google Scholar 

  21. Andreev VN (2001) Russ J Electrochem 37:612

    Article  CAS  Google Scholar 

  22. Ivanov VF, Kucherenko Yu A, Nekrasov AA, Vannikov AV (1992) Russ J Electrochem 28:50 (in Russian)

    Google Scholar 

  23. Aldebert P, Audebert P, Armand M, Bidan G, Pineri M (1986) J Chem Soc, Chem Commun (22):1636

    Article  Google Scholar 

  24. Fabrizio M, Mengoli G, Musiani MM, Paolucci F (1991) J Electroanal Chem 300:23

    Article  CAS  Google Scholar 

  25. Neves S, Polo Fonseca C, Zoppi RA, Cordoba de Torresi SI (2001) J Solid State Electrochem 5:412

    Article  CAS  Google Scholar 

  26. Neves S, Polo Fonseca C (2001) Electrochem Commun 3:36

    Article  CAS  Google Scholar 

  27. Elyashevich GK, Terlemezyan L, Kuryndin IS, Lavrentyev VK, Mokreva P, Rosova E, Sazanov N (2001) Thermochim Acta 374:23

    Article  CAS  Google Scholar 

  28. Berezina NP, Kubaisy AA-R, Alpatova NM, Andreev VN, Griga EI (2004) Russ J Electrochem 40:325

    Article  Google Scholar 

  29. Lai EKW, Beattie PD, Orfino FP, Simon E, Holdcroft S (1999) Electrochim Acta 44:2559

    Article  CAS  Google Scholar 

  30. Sata T (1993) J Membr Sci 82:247

    Article  CAS  Google Scholar 

  31. Vorotyncev MA, Graczyk M, Lisowska-Oleksiak A (2005) Abstracts of VIII International Frumkin Symposium. Moscow, p 247

  32. Alpatova NM, Andreev VN, Danilov AI, Molodkina EB, Polukarov Yu M, Berezina NP, Timofeev SV, Bobrova LP, Belova NN (2002) Russ J Electrochem 38:913

    Article  CAS  Google Scholar 

  33. Barthet C, Guglielmi M (1995) J Electroanal Chem 388:35

    Article  Google Scholar 

  34. Chiang J-C, Macdiarmid AG (1986) Synth Met 13:193

    Article  CAS  Google Scholar 

  35. Volfkovich Yu M, Sergeev AG, Zolotova TK, Afanasiev SD, Efimov ON, Krinichnaya EP (1999) Electrochim Acta 44:1543

    Article  Google Scholar 

  36. Lei W, Kocherginsky NM (2000) React Funct Polym 45:65

    Article  CAS  Google Scholar 

  37. Nekrasov AA, Ivanov VF, Vannikov AV (2001) Electrochim Acta 46:3301

    Article  CAS  Google Scholar 

  38. Ivanov VF, Cheberjako KV, Nekrasov AA, Vannikov AV (2001) Synth Met 119:375

    Article  CAS  Google Scholar 

  39. Sari B, Talu M, Jildirim F (2002) Russ J Electrochem 38:707

    Article  CAS  Google Scholar 

  40. Roman LS, Mello RMQ, Cunha F, Hümmelgen IA (2004) J Solid State Electrochem 8:118

    Article  CAS  Google Scholar 

  41. Zhou H, Chen H, Luo S, Lu G, Wei W, Kuang Y (2005) J Solid State Electrochem 9:574

    Article  CAS  Google Scholar 

  42. Malinauskas A, Holze R (1999) J Solid State Electrochem 3:429

    Article  CAS  Google Scholar 

  43. Zawodzinskiy Th A, Springer TE, Uribe F, Gottesfeld S (1993) Solid State Ionics 60:199

    Article  Google Scholar 

  44. Berezina NP, Timofeev SV, Rollet AL, Fedorovich NV, Dyuran-Vidal’ S (2002) Russ J Electrochem 38:903

    Article  CAS  Google Scholar 

  45. Berezina N, Gnusin N, Dyomina O, Timofeev S (1994) J Membr Sci 86:207

    Article  CAS  Google Scholar 

  46. Berezina NP, Timofeev SV, Kononenko NA (2002) J Membr Sci 209:509

    Article  CAS  Google Scholar 

  47. Kraaijeveld G, Sumberova V, Kuindersma S, Wesselingh H (1995) Chem Eng J 57:163

    CAS  Google Scholar 

  48. Zabolotsky V, Nikonenko V (1993) J Membr Sci 79:181

    Article  CAS  Google Scholar 

  49. Gnusin NP, Berezina NP, Kononenko NA, Dyomina OA (2004) J Membr Sci 243:301

    Article  CAS  Google Scholar 

  50. Gnusin NP, Dyomina OA, Meshechkov AI, Turyan I Ya (1985) Russ J Electrochem 21:1525 (in Russian)

    Google Scholar 

  51. Berezina NP, Kubaisy AA-R (2006) Russ J Electrochem 42:91

    Article  Google Scholar 

  52. Berezina NP, Kononenko NA, Demina OA, Gnusin NP (2004) Polym Sci A 46:672

    Google Scholar 

  53. Berezina NP, Komkova EN (2003) Colloid J 65:1

    Article  CAS  Google Scholar 

  54. Kazarinov VE, Andreev VN (1984) In: Yeager E, Bockris JO’M, Conway BE, Sarangapani S (eds) Comprehensive treatise of electrochemistry, vol 9. Plenum, New York, p 393

    Google Scholar 

  55. Lockshin NA, Sergeev VG, Zezin AB, Kabanov VA (2003) Abstracts of X Russian Conference “Structure and dynamics of molecular systems”. Yalchik Lake, p 162

  56. Butyrskaya EV, Shaposhnik VA (2002) Opt Spectrosc 92:370

    Article  CAS  Google Scholar 

  57. Zabolotsky VI, Nikonenko VV (1996) Perenos ionov v membranach (Ion transport in membranes). Nauka, Moscow

  58. Kononenko NA, Berezina NP, Loza NV (2004) Colloids Surf A Physicochem Eng Asp 239:59

    Article  CAS  Google Scholar 

  59. Ogumi Z, Toyama K, Takehara Z-I, Katakura K, Inuta S (1992) J Membr Sci 65:205

    Article  CAS  Google Scholar 

  60. Karyakin AA, Maltsev IA, Lukachova LV (1996) J Electroanal Chem 402:217

    Article  Google Scholar 

  61. Duic L, Mandic Z, Kovacicek F (1994) Polym Sci A 32:105

    Article  CAS  Google Scholar 

  62. Gurevich Yu Ya, Kharkats Yu J (1992) Superionic conductors. Nauka, Moscow

  63. Zhou HH, Jiao SQ, Chen JH, Wei WZ, Kuang YF (2004) Thin Solid Films 450:233

    Article  CAS  Google Scholar 

  64. Suzdalev IP (2006) Nanotechnologiya: fiziko-himiya nanoklasterov, nanostruktur i nanomaterialov (Nanotechnology: physic-chemistry of nanoclusters, nanostructures and nanomaterials). KomKniga, Moscow

  65. Ivanov VF, Gribkova OL, Novikov SV, Nekrasov AA, Isaakova AA, Vannikov AV, Meshkov GB, Yaminskiy IV (2005) Synth Met 152:153

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Russian Foundation for Basic Research and Krasnodar Region Administration for the financial support of this work. The authors express their gratitude to Dr. Jaroslav Sytchev (University of Miskolc, Hungary) for his valuable help with the work on this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ninel P. Berezina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berezina, N.P., Kubaisy, A.A., Timofeev, S.V. et al. Template synthesis and electrotransport behavior of polymer composites based on perfluorinated membranes incorporating polyaniline. J Solid State Electrochem 11, 378–389 (2007). https://doi.org/10.1007/s10008-006-0159-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-006-0159-2

Keywords

Navigation