Skip to main content
Log in

Polymerization of aniline in perfluorinated membranes under conditions of electrodiffusion of monomer and oxidizer

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A series of composites based on the perfluorinated MF-4SK membrane and polyaniline was obtained under electrodiffusion of monomer and oxidizer. Aniline was used as monomer and potassium dichromate as oxidizer. Chronopotentiometry was proposed as the method of monitoring the formation of polyaniline in the near-surface layer of the membrane. The electronic absorption spectra of the composites and optical microphotographs of the surfaces were obtained right after membrane modification. A combined interpretation of results revealed the following stages: the accumulation of monomer in the reaction space accompanied by the onset of polymerization, the polymerization with a subsequent increase in rate, and the formation of modifier layer on the membrane surface. The polarization behavior of composite membranes was studied using voltammetry. It was shown that the presence of two limiting currents (pseudo-limiting and limiting) on the current-voltage curves when the composite was oriented with a polyaniline layer to the counterion flow but only for membranes obtained at synthesis times more than 35 min. Also for these composite membranes, no plateau of the limiting current on the current-voltage curve was observed in the case of reverse membrane orientation. But at the same time, the fluctuations of potential drop on the current-voltage curve indicated the overlimiting state of electromembrane system. A correlation between the shape of the chronopotentiogram recorded during membrane modification and the polarization behavior of the obtained composites was found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

IEM:

ion-exchange membrane

PANI:

polyaniline

CVC:

current-voltage curve

ChP:

chronopotentiogram

An+ :

anilinium cations

PD:

potential drop

References

  1. Luo T, Abdu S, Wessling M (2018) Selectivity of ion exchange membranes: a review. J Membr Sci 555:429–454

    Article  CAS  Google Scholar 

  2. Ran J, Wu L, He Y, Yang Z, Wang Y, Jiang C, Ge L, Bakangura E, Xu T (2017) Ion exchange membranes: new developments and applications. J Membr Sci 522:267–291

    Article  CAS  Google Scholar 

  3. Sata T, Ishii Y, Kawamura K, Matsusaki K (1999) Composite membranes prepared from cation exchange membranes and polyaniline and their transport properties in electrodialysis. J Electrochem Soc 146:585–591

    Article  CAS  Google Scholar 

  4. Sata T, Sata T, Yang W (2002) Studies on cation-exchange membranes having permselectivity between cations in electrodialysis. J Membr Sci 206:31–60

    Article  CAS  Google Scholar 

  5. Nagarale RK, Gohil GS, Vinod SK, Trivedi GS, Rangarajan R (2004) Preparation and electrochemical characterization of cation- and anion-exchange/polyaniline composite membranes. J Colloid Interface Sci 277(1):162–171

    Article  CAS  Google Scholar 

  6. Sivaraman P, Chavan JG, Thakur AP, Hande VR, Samui AB (2007) Electrochemical modification of cation exchange membrane with polyaniline for improvement in permselectivity. Electrochim Acta 52:5046–5052

    Article  CAS  Google Scholar 

  7. Li J, Zhu J, Wang J, Yuan S, Lin J, Shen J, Van der Bruggen B (2018) Charge-assisted ultrafiltration membranes for monovalent ions separation in electrodialysis. J Appl Polym Sci. https://doi.org/10.1002/app.45692

    Article  Google Scholar 

  8. Hosseini MG, Shahryari E (2017) Fabrication of novel solid-state supercapacitor using a Nafion polymer membrane with graphene oxide/multiwalled carbon nanotube/polyaniline. J Solid State Electrochem 21:2833–2848

    Article  CAS  Google Scholar 

  9. Naveen MH, Gurudatt NG, Shim Y-B (2017) Applications of conducting polymer composites to electrochemical sensors: a review. Appl Mater Today 9:419–433

    Article  Google Scholar 

  10. Zakil FA, Kamarudin SK, Basri S (2016) Modified Nafion membranes for direct alcohol fuel cells: an overview. Renew Sust Energ Rev 65:841–852

    Article  CAS  Google Scholar 

  11. Dutta K, Das S, Kundu PP (2015) Partially sulfonated polyaniline induced high ion- exchange capacity and selectivity of Nafion membrane for application in direct methanol fuel cells. J Membr Sci 473:94–101

    Article  CAS  Google Scholar 

  12. Xiangguo T, Jicui D, Jing S (2015) Effects of different kinds of surfactants on Nafion membranes for all vanadium redox flow battery. J Solid State Electrochem 19:1091–1101

    Article  Google Scholar 

  13. Tan S, Belanger D (2005) Characterization and transport properties of Nafion/Polyaniline composite membranes. J Phys Chem B 109(49):23480–23490

    Article  CAS  Google Scholar 

  14. Compan V, Riande E, Fernandez-Carretero FJ, Berezina NP, Sytcheva AA-R (2008) Influence of polyaniline intercolations on the conductivity and permselectivity of perfluorinated cation-exchange membranes. J Membr Sci 318:255–263

    Article  CAS  Google Scholar 

  15. Stejskal J (2015) Polymers of phenylenediamines. Prog Polym Sci 41:1–31

    Article  CAS  Google Scholar 

  16. Abdo N, Easton EB (2016) Nafion/Polyaniline composite membranes for hydrogen production in the Cu–Cl thermochemical cycle. Int J Hydrog Energy 41:7892–7903

    Article  CAS  Google Scholar 

  17. Huang QM, Zhang QL, Huang HL, Li WS, Huang YJ, Luoc JL (2008) Methanol permeability and proton conductivity of Nafion membranes modified electrochemically with polyaniline. J Power Sources 184:338–343

    Article  CAS  Google Scholar 

  18. Loza NV, Dolgopolov SV, Kononenko NA, Andreeva MA, Korshikova YS (2015) Effect of surface modification of perfluorinated membranes with polyaniline on their polarization behavior. Russ J Electrochem 51:538–545

    Article  CAS  Google Scholar 

  19. Stejskal J, Gilbert RG (2002) Polyaniline. Preparation of a conducting polymer (IUPAC technical report). Pure Appl Chem 74:857–867

    Article  CAS  Google Scholar 

  20. Kononenko NA, Loza NV, Shkirskaya SA, Falina IV, Khanukaeva DY (2015) Influence of conditions of polyaniline synthesis in perfluorinated membrane on electrotransport properties and surface morphology of composites. J Solid State Electrochem 19:2623–2631

    Article  CAS  Google Scholar 

  21. Berezina NP, Kononenko NA, Sytcheva AA-R, Loza NV, Shkirskaya SA, Hegman N, Pungor A (2009) Perfluorinated nanocomposite membranes modified by polyaniline: electrotransport phenomena and morphology. Electrochim Acta 54:2342–2352

    Article  CAS  Google Scholar 

  22. Protasov KV, Shkirskaya SA, Berezina NP, Zabolotskii VI (2010) Composite sulfonated cation-exchange membranes modified with polyaniline and applied to salt solution concentration by electrodialysis. Russ J Electrochem 46:1131–1140

    Article  CAS  Google Scholar 

  23. Kononenko NA, Dolgopolov SV, Berezina NP, Loza NV, Lakeev SG (2012) Asymmetry of voltammetric characteristics of perfluorinated MF-4SK membranes with polyaniline-modified surface. Russ J Electrochem 48:857–861

    Article  CAS  Google Scholar 

  24. Wu W, Pan D, Li Y, Zhao G, Jing L, Chen S (2015) Facile fabrication of polyaniline nanotubes using the self-assembly behavior based on the hydrogen bonding: a mechanistic study and application in high-performance electrochemical supercapacitor electrode. Electrochim Acta 152:126–134

    Article  CAS  Google Scholar 

  25. Choi J-H, Park J-S, Moon S-H (2002) Direct measurements of concentration distribution within the boundary layer of an ion-exchange membrane. J Colloid Interface Sci 251(2):311–317

    Article  CAS  Google Scholar 

  26. Loza NV, Kononenko NA, Shkirskaya SA, Berezina NP (2006) Effect of modification of ion-exchange membrane MF-4SK on its polarization characteristics. Russ J Electrochem 42:815–822

    Article  CAS  Google Scholar 

  27. Volodina E, Pismenskaya N, Nikonenko V, Larchet C, Pourcelly G (2005) Ion transfer across ion-exchange membranes with homogeneous and heterogeneous surfaces. J Colloid Interface Sci 285(1):247–258

    Article  CAS  Google Scholar 

  28. Krol JJ, Wessling M, Strathmann H (1999) Chronopotentiometry and overlimiting ion transport through monopolar ion exchange membranes. J Membr Sci 162:155–164

    Article  CAS  Google Scholar 

  29. Rubinstein I, Staude E, Kedem O (1988) Role of the membrane surface in concentration polarization at ion-exchange membrane. Desalination 69:101–114

    Article  CAS  Google Scholar 

  30. Taky M, Pourcelly G, Lebon F, Gavach C (1992) Polarization phenomena at the interfaces between an electrolyte solution and an ion exchange membrane. Part I: Ion transfer with a cation exchange membrane. J Electroanal Chem 336:171–194

    Article  CAS  Google Scholar 

  31. Mažeikienė R, Niaura G, Malinauskas A (2019) A comparative multiwavelength Raman spectroelectrochemical study of polyaniline: a review. J Solid State Electrochem 23:1631–1640

    Article  Google Scholar 

  32. Nekrasov AA, Ivanov VF, Vannikov AV (2001) A comparative voltabsorptometric study of polyaniline films prepared by different methods. Electrochim. Acta 46:3301–3307

    Article  CAS  Google Scholar 

  33. Martí-Calatayud MC, Buzzi DC, García-Gabaldón M, Bernardes AM, Tenório JAS, Pérez-Herranz V (2014) Ion transport through homogeneous and heterogeneous ion-exchange membranes in single salt and multicomponent electrolyte solutions. J Membr Sci 466:45–47

    Article  Google Scholar 

  34. Trchová M, Morávková Z, Bláha M, Stejskal J (2014) Raman spectroscopy of polyaniline and oligoaniline thin films. Electrochim Acta 122:28–38

    Article  Google Scholar 

  35. Stejskal J, Sapurina I, Trchová M (2010) Polyaniline nanostructures and the role of aniline oligomers in their formation. Prog Polym Sci 35:1420–1481

    Article  CAS  Google Scholar 

  36. Gierke TD, Munn GE, Wilson FC (1981) The morphology in Nafion perfluorinated membrane products, as determined by wide- and small-angle x-ray studies. J Polym Sci 19:1687–1704

    CAS  Google Scholar 

  37. Loza NV, Falina IV, Popova DS, Kononenko NA (2016) Influence of conditions of polyaniline template synthesis on its distribution in perfluorinated membrane. Sorbtsionnye Khromatograficheskie Protsessy 16:663–671

    CAS  Google Scholar 

  38. Loza NV, Loza SA, Romanyuc NA, Kononenko NA (2019) Experimental and theoretical investigation of electrodialysis process of model solutions containing aniline and sulfuric acid. Russ J Electrochem 55:1091–1098

    Article  Google Scholar 

  39. Kononenko NA, Fomenko MA, Volfkovich YM (2015) Structure of perfluorinated membranes investigated by method of standard contact porosimetry. Adv Colloid Interf Sci 222:425–435

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 18-38- 20069 mol_a_ved).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Andreeva.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreeva, M., Loza, N., Kutenko, N. et al. Polymerization of aniline in perfluorinated membranes under conditions of electrodiffusion of monomer and oxidizer. J Solid State Electrochem 24, 101–110 (2020). https://doi.org/10.1007/s10008-019-04463-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04463-7

Keywords

Navigation