Skip to main content

Advertisement

Log in

Assessment of doped ceria as electrolyte

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A model describing the performance of a fuel cell based on 10 mol% gadolinia-doped ceria, Ce0.9Gd0.1O1.95−x (CG10), was formulated. The total electrical conductivity of CG10 was measured under very reducing conditions in the temperature range of 753 K to 948 K. Oxygen permeation experiments were carried out to measure the leak current through a ceria electrolyte. The results of the measurements are compared with predictions of the formulated model. Furthermore, the response of a fuel cell to changing operating conditions such as external load, temperature, electrode polarization resistances, and defect chemistry is investigated using the model. It is found that the maximum achievable efficiency of a CG10-based fuel cell is increased when (1) the temperature is decreased, when (2) the electrolyte thickness is increased, or when (3) the cathode polarization resistance is decreased. The efficiency can also in certain circumstances be increased by an increase of anode polarization resistance. Finally, the efficiency is reduced if the vacancy formation enthalpy is decreased to the level of fine-grained CG10. The performance of a CG10-based cell is evaluated by comparing it with a state-of-the-art zirconia-based cell. At 873 K, the efficiency of a fuel cell with a 10-μm CG10 electrolyte was limited to 0.74, whereas a cell with a perfect electrolyte would have an efficiency of 1. The power output of the CG10 cell at this efficiency is, however, four times larger than the zirconia-based cell at the same efficiency. This is due to the much lower cathode polarization resistance of \({\left( {{\text{La}}_{{0.6}} {\text{Sr}}_{{0.4}} } \right)}_{z} {\text{Co}}_{{0.2}} {\text{Fe}}_{{0.8}} {\text{O}}_{{3 \, - \, \delta}}\)-CG10 cathodes on CG10 compared to the (La0.75Sr0.25)0.95MnO3 cathodes on stabilized zirconia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Mogensen M, Sammes NM, Tompsett GA (2000) Solid State Ion 129:63

    Article  CAS  Google Scholar 

  2. Inaba H, Tagawa H (1996) Solid State Ion 83:63

    Article  Google Scholar 

  3. Wang WG, Mogensen M (2005) Solid State Ion 176:457

    Article  CAS  Google Scholar 

  4. Xu X, Xia C, Xiao G, Peng D, Yi B (2005) Solid State Ion 176:1513

    Article  CAS  Google Scholar 

  5. Zhonge B, Cheng M, Dong Y, Wu H, She Y (2005) Solid State Ion 176:655

    Article  CAS  Google Scholar 

  6. Xia C, Chen F, Liu M (2001) Electrochem Solid-State Lett 4:A52

    Article  CAS  Google Scholar 

  7. Hibino T, Hashimoto A, Asano K, Yano M, Suzuki M, Sano M (2002) Electrochem Solid-State Lett 5:A242

    Article  CAS  Google Scholar 

  8. Zha S, Moore A, Abernathy H, Liu M (2004) J Electrochem Soc 151:A1128

    Article  CAS  Google Scholar 

  9. Attryde P, Baker A, Baron S, Blake A, Brandon NP, Corcoran D, Cumming D, Duckett A, El-Koury K, Haigh D, Harrington M, Kidd C, Leah R, Lewis G, Matthews C, Maynard N, McColm T (2005) Proc SOFC IX, 113

  10. Mogensen M Lybye D, Kammer K, Bonanos N (2005) Proc SOFC IX, 1068

  11. Riess I, Gödickemeier M, Gauckler LJ (1996) Solid State Ion 90:91

    Article  CAS  Google Scholar 

  12. Steele BCH (2000) Solid State Ion 129:95

    Article  CAS  Google Scholar 

  13. Näfe H (2001) J Appl Electrochem 31:1235

    Article  Google Scholar 

  14. Matsui T, Inaba M, Mineshige A, Ogumi Z (2005) Solid State Ion 176:647

    Article  CAS  Google Scholar 

  15. Virkar V (2005) J Power Sources 147:8

    Article  CAS  Google Scholar 

  16. Leah RT, Brandon NP, Aguiar P (2005) J Power Sources 145:336

    Article  CAS  Google Scholar 

  17. Schottky W, Wagner C (1930) WZ Phys Chem B11:11

    Google Scholar 

  18. Wang S, Inaba H, Hiroaki T, Dokiya M, Hashimoto T (1998) Solid State Ion 107:73

    Article  CAS  Google Scholar 

  19. Wang S, Kobayashi T, Dokiya M, Hashimoto T (2000) J Electrochem Soc 147:3606

    Article  CAS  Google Scholar 

  20. Primdahl S, Mogensen M (1999) Proc SOFC VI, 530

  21. Barfod R, Mogensen M, Klemensø T, Hagen A, Liu YL, Hendriksen PV (2005) Proc SOFC IX, 524

  22. Appel CC, Bonanos N, Horsewell A, Linderoth S (2001) J Mater Sci 36:4493

    Article  CAS  Google Scholar 

  23. Suzuki T, Kosacki I, Anderson HU (2002) J Am Ceram Soc 85:1492

    Article  CAS  Google Scholar 

  24. Chiang YM, Lavik EB, Kosacki I, Tuller HL, Ying JY (1996) Appl Phys Lett 69:185

    Article  CAS  Google Scholar 

  25. Chiang YM, Lavik EB, Blom DA (1997) Nanostruct Mater 9:633

    Article  CAS  Google Scholar 

  26. Kupp J (2006) personal communication

  27. Wang WG, Barfod R, Larsen PH, Kammer K, Bentzen J, Hendriksen PV (2003) Proc SOFC VIII, 400

  28. Koch S, Hendriksen PV, Mogensen M, Liu YL, Dekker N, Rietveld B, Haart B, Tietz F (2006) Fuel Cells - accepted

  29. Hagen A, Barfod R, Hendriksen PV, Liu YL, Ramousse S (2006) J Electrochem Soc - submitted

  30. Matsuzaki Y, Yasuda I (2002) Solid State Ion 152–153:463

    Article  Google Scholar 

  31. Nguyen TL, Kobayashi K, Honda T, Iimure Y, Kato K, Neghisi A, Nozaki K, Tappero F, Sasaki K, Shirahama H, Ota K, Dokiya M, Kato T (2004) Solid State Ion 174:163

    Article  CAS  Google Scholar 

  32. Shiono M, Kobayashi K, Nguyen TL, Hosoda K, Kato T, Ota K, Dokiya M (2004) Solid State Ion 170:1

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was, in part, supported by the Danish Energy Agency through the project DK-SOFC b long-term SOFC R and D, contract no. 33031-0006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bjarke Dalslet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dalslet, B., Blennow, P., Hendriksen, P.V. et al. Assessment of doped ceria as electrolyte. J Solid State Electrochem 10, 547–561 (2006). https://doi.org/10.1007/s10008-006-0135-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-006-0135-x

Keywords

Navigation