Skip to main content
Log in

Analysis of gadolinium-doped ceria-ternary carbonate composite electrolytes for solid oxide fuel cells

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Doped ceria-carbonate electrolytes have high ionic conductivity and shows good solid oxide fuel cell (SOFC) performance at low temperature (400–600 °C). Various compositions of unary, binary, and ternary gadolinium-doped ceria-carbonate electrolytes are prepared using (Na, Li, K, Sr)-CO3 and GDC. The electrolytes are physically and electrochemically characterized using X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, and two-probe AC-conductivity methods. In the unary gadolinium-doped ceria-carbonate composite electrolytes, best ionic conductivity is shown by 25 wt% Li2CO3-GDC electrolyte (0.077 S cm−1 at 600 °C). The ternary carbonate composite mixture of 25 wt% (LiNaK)2CO3-GDC exhibits higher ionic conductivity (0.29 S cm−1 at 600 °C) than binary and unary carbonate electrolytes. The enhanced conductivity may be due to lower eutectic temperature of (LiNaK)2CO3 rendering larger (LiNaK)2CO3-GDC interface. At 600 °C, the peak power density for the cell of ternary carbonate, 25 wt% (LiNaK)2CO3-GDC electrolyte and binary carbonate, 25 wt% (LiNa)2CO3-GDC electrolyte is 224 mW cm−2 (at 555 mA cm−1) and 180 mW cm−2 (at 417 mA cm−1), which would enable them to be used as electrolytes for low-temperature SOFC.

Current-voltage characteristics and SEM micrograph of 25 wt% (LiNaK)2CO3-GDC electrolyte and 25 wt% (LiNa)2CO3-GDC electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Singhal SC, Kendall K (2003) High temperature solid oxide fuel cells: fundamentals, design, applications. Elsevier Science Ltd., Amsterdam

    Google Scholar 

  2. Steele BCH (2000) Appraisal of Ce1-yGdyO2-y/2 electrolytes for IT-SOFC operation at 500 °C. Solid State Ionics 129:95–110

    Article  CAS  Google Scholar 

  3. Brandon NP, Skinner S, Steele BCH (2003) Recent advances in materials for fuel cells. Annu Rev Mater Res 33:183–213

    Article  CAS  Google Scholar 

  4. Steele BCH (1999) Fuel-cell technology: running on natural gas. Nature 400:619–621

    Article  CAS  Google Scholar 

  5. Haile SM (2003) Fuel cell materials and components. Acta Mater 51:5981–6000

    Article  CAS  Google Scholar 

  6. Milliken C, Guruswamy S, Khandkar A (1999) Evaluation of ceria electrolytes in solid oxide fuel cells electric power generation. J Electrochem Soc 146:872–882

    Article  CAS  Google Scholar 

  7. Xia C, Liu M (2001) Low-temperature SOFCs based on Gd0.1Ce0.9O1.95 fabricated by dry pressing. Solid State Ionics 144:249–255

    Article  CAS  Google Scholar 

  8. Steele BCH, Heinzel A (2001) A materials for fuel-cell technologies. Nature 414:345–352

    Article  CAS  Google Scholar 

  9. Liang C (1973) Conduction characteristics of the lithium iodide-aluminium oxide solid electrolytes. J Electrochem Soc 120:1289–1292

    Article  CAS  Google Scholar 

  10. Huang JB, Yang LZ, Gao RF, Mao ZQ, Wang C (2006) A high-performance ceramic fuel cell with samarium doped ceria–carbonate composite electrolyte at low temperatures. Electrochem Commun 8:785–789

    Article  CAS  Google Scholar 

  11. Zhu B, Yang XT, Xu J, Zhu ZG, Ji SJ, Sun MT, Sun JC (2003) Innovative low temperature SOFCs and advanced materials. J Power Sources 118:47–53

    Article  CAS  Google Scholar 

  12. Schober T (2005) Composites of ceramic high-temperature proton conductors with inorganic compounds. Electrochem Solid-State Lett 8:A199–A200

    Article  CAS  Google Scholar 

  13. Demin A, Tsiakaras P, Gorbova E, Hramova S (2004) A SOFC based on a co-ionic electrolyte. J Power Sources 131:231–236

    Article  CAS  Google Scholar 

  14. Li Y, Rui Z, Xia C, Anderson M, Lin YS (2009) Performance of ionic-conducting ceramic/carbonate composite material as solid oxide fuel cell electrolyte and CO2 permeation membrane. Catal Today 148:303–309

    Article  CAS  Google Scholar 

  15. Lapa CM, Figueiredo FML, De Souza DPF, Song L, Zhu B, Marques FMB (2010) Synthesis and characterization of composite electrolytes based on samaria-doped ceria and Na/Li carbonates. Int J Hydrog Energy 35:2953–2957

    Article  CAS  Google Scholar 

  16. Zhu B (2003) Functional ceria–salt-composite materials for advanced ITSOFC applications. J Power Sources 114:1–9

    Article  CAS  Google Scholar 

  17. Raza R, Qin H, Fan L, Takeda K, Mizuhata M, Zhu B (2012) Electrochemical study on co-doped ceria-carbonate composite electrolyte. J Power Sources 9201:121–127

    Article  Google Scholar 

  18. Xia C, Li Y, Tian Y, Liu Q, Zhao Y, Jia L, Li Y (2009) A high performance composite ionic conducting electrolyte for intermediate temperature fuel cell and evidence for ternary ionic conduction. J Power Sources 188:156–162

    Article  CAS  Google Scholar 

  19. Huang J, Gao Z, Mao Z (2010) Effects of salt composition on the electrical properties of samaria-doped ceria/carbonate composite electrolytes for low-temperature SOFCs. Int J Hydrog Energy 35:4270–4275

    Article  CAS  Google Scholar 

  20. Jing Y, Patakangas J, Lund PD, Zhu B (2013) An improved synthesis method of ceria-carbonate based composite electrolytes for low-temperature SOFC fuel cells. Int J Hydrog Energy 38:16532–16538

    Article  CAS  Google Scholar 

  21. Xia C, Li Y, Tian Y, Liu Q, Wang Z, Zhao Y, Jia L, Li Y (2010) Intermediate temperature fuel cell with a doped ceria–carbonate composite electrolyte. J Power Sources 195:3149–3154

    Article  CAS  Google Scholar 

  22. Chockalingam R, Jain S, Basu S (2010) Studies on conductivity of composite GdCeO2-carbonate electrolytes for low temperature solid oxide fuel cells. Integr Ferroelectr 116:23–34

    Article  CAS  Google Scholar 

  23. Huang JB, Mao ZQ, Yang LZ, Peng RR (2005) SDC–carbonate composite electrolytes for low-temperature SOFCs. Electrochem Solid-State Lett 8(9):A437–A440

    Article  CAS  Google Scholar 

  24. Näfe H (2014) Conductivity of alkali carbonates, carbonate-based composite electrolytes and IT-SOFC. ECS J Solid State Sci Technol 3:N7–N14

    Article  Google Scholar 

  25. Selman JR, Maruin G, Mamantov HC, Braunstein J (1981) Advances in molten salt chemistry, vol 4. Plenum Press, New York, pp 159–389

    Google Scholar 

  26. Huang J, Mao Z, Liu Z, Wang C (2007) Development of novel low-temperature SOFCs with co-ionic conducting SDC-carbonate composite electrolytes. Electrochem Commun 9:2601–2605

    Article  CAS  Google Scholar 

  27. Chockalingam R, Basu S (2011) Impedance spectroscopy studies of Gd-CeO2-(LiNa)CO3 nanocomposite electrolyte for low temperature SOFC applications. Int J Hydrog Energy 386:14977–14983

    Article  Google Scholar 

  28. Raza R, Wang X, Mac Y, Liu X, Zhu B (2010) Improved ceria-carbonate composite electrolytes. Int J Hydrog Energy 35:2684–2688

    Article  CAS  Google Scholar 

  29. Wang X, Ma Y, Li S, Zhu B, Muhammed M (2012) SDC/Na2CO3 nanocomposite: new freeze drying based synthesis and application as electrolyte in low-temperature solid oxide fuel cells. Int J Hydrog Energy 37:19380–19387

    Article  CAS  Google Scholar 

  30. Fan L, Zhang G, Chen M, Wang C, Di J, Zhu B (2012) Proton and oxygen ionic conductivity of doped ceria-carbonate composite by modified Wagner polarization. Int J Electrochem Sci 7:8420–8435

    CAS  Google Scholar 

  31. Fan L, Wang C, Chen M, Zhu B (2013) Recent developments of ceria-based (nano)composite materials for low temperature ceramic fuel cells and electrolyte-free fuel cells. J Power Sources 234:154–174

    Article  CAS  Google Scholar 

  32. Khan MA, Raza R, Lima RB, Chaudhry MA, Ahmed E, Abbas G (2013) Comparative study of the nano-composite electrolytes based on samaria-doped ceria for low temperature solid oxide fuel cells (LT-SOFCs). Int J Hydrog Energy 38:16524–16531

    Article  CAS  Google Scholar 

  33. Li C, Zeng Y, Wang Z, Xu F, Ye Z, Shi R (2016) An investigation of protonic and oxide ionic conductivities at the interfacial layers in SDC-LNC composite electrolytes. Electrochim Acta 212:583–593

    Article  CAS  Google Scholar 

  34. Yin S, Zeng Y, Li C, Chen X, Ye Z (2013) Investigation of Sm0.2Ce0.8O1.9/Na2CO3 nanocomposite electrolytes: preparation, interfacial microstructures, and ionic conductivities. ACS Appl Mater Interfaces 5:12876–12886

    Article  CAS  Google Scholar 

  35. Janz GJ, Lorenz MR (1961) Molten carbonate electrolytes: physical properties, structure and mechanism of electrical conductance. J Electrochem Soc 108:1052–1058

    Article  CAS  Google Scholar 

  36. Spedding PL (1973) Electrical conductance of molten alkali carbonate binary mixtures. J Electrochem Soc 120:1049–1052

    Article  CAS  Google Scholar 

  37. Miyazaki Y, Yanagida M, Tanimoto K, Kodama T, Tanase S (1986) An apparatus for electrical conductance measurements with molten carbonates. J Electrochem Soc 133:1402–1404

    Article  CAS  Google Scholar 

  38. Kojima T, Miyazaki Y, Nomura K, Tanimoto K (2007) Electrical conductivity of molten Li2CO3-X2CO3 (X: Na, K, Rb, and Cs) and Na2CO3-Z2CO3 (Z: K, Rb, and Cs). J Electrochem Soc 154:F222–F230

    Article  CAS  Google Scholar 

  39. Cerisier P, Roux F (1977) A study of the electrical conductivity and transition points of sodium carbonate. J Solid State Chem 22:245–251

    Article  CAS  Google Scholar 

  40. Cerisier P, Roux F (1978) A study of the electrical conductivity and transition points of potassium carbonate. Solid State Commun 26:661–663

    Article  CAS  Google Scholar 

  41. Ward AT, Janz GJ (1965) Molten carbonate electrolytes: electrical conductance, density and surface tension of binary and ternary mixtures. Electrochim Acta 10:849–857

    Article  CAS  Google Scholar 

  42. Kojima T, Miyazaki Y, Nomura K, Tanimoto K (2008) Density, surface tension, and electrical conductivity of ternary molten carbonate system Li2CO3 – Na2CO3 – K2CO3 and methods for their estimation. J Electrochem Soc 155:F150–F156

    Article  CAS  Google Scholar 

  43. Tanase S, Miyazaki Y, Yanagida M, Tanimoto K, Kodama T (1988) Work on electrically conductive materials for molten carbonate fuel cells. Prog Batter Solar Cells 7:389–395

    CAS  Google Scholar 

  44. Ferreira ASV, Soares CMC, Figueiredo FMHLR, Marques FMB (2011) Intrinsic and extrinsic compositional effects in ceria/carbonate composite electrolyte for fuel cells. Int J Hydrog Energy 36:3704–3711

    Article  CAS  Google Scholar 

  45. Ali SAM, Muchtar A, Sulong AB, Muhamad N, Majlan EH (2013) Influence of sintering temperature on the power density of samarium-doped-ceria carbonate electrolyte composites for low-temperature solid oxide fuel cells. Ceram Int 39:5813–5820

    Article  Google Scholar 

  46. Fan L, He C, Zhu B (2017) Role of carbonate phase in ceria–carbonate composite for low temperature solid oxide fuel cells: a review. Int J Energy Res 41:465–481

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge funding received for executing the project from Inno-Indigo project scheme between the European Union and DST, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suddhasatwa Basu.

Electronic supplementary material

ESM 1

(DOCX 425 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, I., Tiwari, P.K. & Basu, S. Analysis of gadolinium-doped ceria-ternary carbonate composite electrolytes for solid oxide fuel cells. Ionics 24, 211–219 (2018). https://doi.org/10.1007/s11581-017-2184-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2184-9

Keywords

Navigation