Skip to main content
Log in

Polymer-based bilayer interfaces for electrochemical rectification

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this paper, the electrochemical current rectification phenomenon exhibited at an electrochemical interface constituted by a glassy carbon electrode covered with a bilayer of polymer films is discussed. The authors have shown that Methylene Blue (MB) redox species can be confined to a very thin insulating polymer film formed from orthophenylene diamine. The poly(opd) film exhibited excellent blocking properties to redox molecules in solution. On the other hand, the insulating poly(opd) film trapped with MB could mediate electron transfer between the redox molecules in solution and the electrode. Further, a second polymeric layer (Nafion film) trapped with ferrocene redox species was formed as the outer layer over the inner poly (opd) film containing MB. This bilayer-modified electrode, due to the significant difference in the redox potentials of the MB and ferrocene species immobilized in the inner and outer layers, respectively, exhibits unidirectional current flow and the results of the voltammetric investigations on the modified electrodes are described in this communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2

Similar content being viewed by others

References

  1. Collier CP, Wong EW, Belohradsky M, Raymo FM, Stoddart JF, Kuekes PJ, Williams RS, Heath JR (1998) Science 285:391

    Google Scholar 

  2. Collier CP, Jeppesen JO, Luo Y, Perking J, Wong EW, Heath JR, Stoddart JF (2001) J Am Chem Soc 123:12632

    Google Scholar 

  3. Chen J, Reed MA, Rawlett AM, Tour JM (1999) Science 286:1550

    Article  CAS  PubMed  Google Scholar 

  4. Bumm LA, Arnold JJ, Cygan MT, Dunbar TD, Burgin TP, Jones L II, Allara DL, Tour JM, Weiss PS (1996) Science 271:1705

    Google Scholar 

  5. Metzger RM (1999) Acc Chem Res 32:950

    Google Scholar 

  6. Bharathi S, Yegnaraman V, Prabhakara Rao G (1993) Langmuir 9:1614

    Google Scholar 

  7. Brousseau LC III, Zhao Q, Shultz DA, Feldheim DL (1998) J Am Chem Soc 120: 7645

    Google Scholar 

  8. Aviram A, Ratner M (1974) Chem Phys Lett 29:277

    Google Scholar 

  9. Metzger RM (2000) J Mater Chem 10:55

    Google Scholar 

  10. Brady AC, Hoddar B, Martin AS, Sambles JR, Ewels CP, Jones R, Bridden PR, Musa AM, Panetta CA, Mattern DL (1999) J Mater Chem 9:2271

    Google Scholar 

  11. Ashwell GJ, Sambles JR, Martin AS, Parker WG, Szablewski M (1990) J Chem Soc Chem Commun, p 1374

  12. Metzger RM, Chen B, Hopfner U, Lakshmikantham MV, Vuillaume D, Kawai T, Wu X, Tachibana H, Hughes TV, Sakurai H, Baldwin JW, Hosch C, Cava MP, Brehmer L, Ashwell GJ (1997) J Am Chem Soc 119:10455

    Google Scholar 

  13. Ashwell GJ, Gandolfo DS (2001) J Mater Chem 11:246

    Google Scholar 

  14. Metzger RM (1999) J Mater Chem 9:2027

    Google Scholar 

  15. Xu Tao, Peterson I, Lakshmikantham MV, Metzger RM (2001) Angew Chem Int Ed 40:1749

    Google Scholar 

  16. Metzger RM, Xu Tao, Peterson I (2001) J Phys Chem B 105:7280

    Google Scholar 

  17. Ashwell GJ, Gandolfo DS (2002) J Mater Chem 12:411

    Google Scholar 

  18. Ashwell GJ, Gandolfo DS, Hamilton R (2002) J Mater Chem 12:416

    Google Scholar 

  19. Denisevich P, Willman KW, Murray RW (1981) J Am Chem Soc 103:4727

    Google Scholar 

  20. Pickup PG, Kutner W, Leidner CR, Murray RW (1984) J Am Chem Soc 106:1991

    Google Scholar 

  21. Chidsey CED, Murray RW (1986) Science 231:25

    CAS  Google Scholar 

  22. Pickup PG, Leidner CR, Denisevich P, Murray RW (1984) J Electroanal Chem 164:39

    Google Scholar 

  23. Leidner CR, Denisevich P, Willman KW, Murray RW (1984) J Electroanal Chem 164:63

    Google Scholar 

  24. Kittelsen GP, White HW, Wrighton MS (1985) J Am Chem Soc 107:7373

    Google Scholar 

  25. Smith DK, Lane GA, Wrighton MS (1988) J Phys Chem 92:2616

    Google Scholar 

  26. Paul Marks (1996) New Scientist 149:23

    Google Scholar 

  27. Sucheta A, Ackrell BAC, Cochran B, Armstrong FA (1992) Nature 356:361

    Google Scholar 

  28. Sang-Keun Oh, Baker LA, Crooks RM (2002) Langmuir 18:6981

    Google Scholar 

  29. Ulman A (1991) An introduction to ultrathin organic films. Academic, Boston

    Google Scholar 

  30. Ulman A (1996) Chem Rev 96:1533

    Article  CAS  PubMed  Google Scholar 

  31. Nuzzo RG, Allara DL (1983) J Am Chem Soc 105:4481

    CAS  Google Scholar 

  32. Bain CD, Whitesides GM (1988) Science 240:62

    Google Scholar 

  33. Rong D, Hong H-G, Kim YI, Krueger JS, Mayer JE, Mallouk TE (1990) Coord Chem Rev 97:237

    Google Scholar 

  34. Ferrence GM, Henderson JI, Kurth DG, Morgenstern DA, Bein T, Kubiak CP (1996) Langmuir 12:3075

    Google Scholar 

  35. Alleman KS, Weber K, Creager SE (1996) J Phys Chem 100:17050

    Google Scholar 

  36. Sato Y, Itoigawa H, Uosaki K (1993) Bull Chem Soc Jpn 66:1032

    Google Scholar 

  37. Sheela Berchmans, Ramalechume C, Lakshmi V, Yegnaraman V (2002) J Mater Chem 12:2538

    Google Scholar 

  38. Heineman WR, Wieck HJ, Yacynych AM (1980) Anal Chem 52:345

    Google Scholar 

  39. Ohnuki Y, Matsuda H, Ohsaka T, Oyama N (1983) J Electroanal Chem 158:55

    Google Scholar 

  40. Ohsaka T, Hirokawa T, Miyamoto H, Oyama N (1987) Anal Chem 59:1758

    Google Scholar 

  41. Ciriello R, Cataldi TRI, Centonze D, Guerrilri A (2000) Electroanalysis 12:825

    Google Scholar 

  42. Lang G, Inzelt G (1999) Electrochim Acta 44:2037

    Google Scholar 

  43. Martinusz K, Inzelt G, Horanyi G (1996) J Electroanal Chem 404:143

    Google Scholar 

  44. Malitesta C, Palmisano F, Torsi L, Zambonin PG (1990) Anal Chem 62:2735

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Department of Science and Technology, Government of India, New Delhi for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yegnaraman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berchmans, S., Usha, S., Ramalechume, C. et al. Polymer-based bilayer interfaces for electrochemical rectification. J Solid State Electrochem 9, 595–600 (2005). https://doi.org/10.1007/s10008-004-0606-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-004-0606-x

Keywords

Navigation