Skip to main content
Log in

Conductivity and interfacial behaviour of bis-1,4-dioxapentyl sulfate (IV) and 1,4,7-trioxaoctyl sulfate (IV) based electrolyte for lithium batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The electrolytic conductivity and viscosity of lithium perchlorate in bis-1,4-dioxapentyl sulfate (IV) [OS22] and 1,4,7-trioxaoctyl sulfate (IV) [OS32] were determined as a function of salt concentration (0.00005–2 M) and temperature (286–318 K). At 298 K, the highest conductivity (κ=2.77×10−3 Ω−1 cm−1) was achieved for OS22 based solutions containing 1–2 M LiClO4. Formation of electrically neutral ion pairs appeared to be the main reason for a continuous decline in the molar conductivity (Λ) observed in dilute solutions with increasing salt concentration. Additionally, an increase in the dynamic viscosity (η) accounted for a decrease in the mobility of charge carriers with increasing length of the oxaalkyl chain in the podand molecules. The temperature dependence of the conductivity and viscosity was found to be of the Arrhenius type for both systems investigated, while the activation energies, E κ # and E η #, varied in parallel with the degree of interionic aggregation. CVs obtained on a polycrystalline Pt electrode indicated the electrochemical stability of OS22 in the potential range between −0.8 V and 4.7 V versus Li+/Li. A linear current density–potential dependence, with the same slope for the anodic and cathodic branches proved the reversibility of lithium electrodeposition and re-dissolution at the Pt/1 M LiClO4+OS22 interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gierczyk B, Łęska B (1999) J Incl Phenom 35:327

    Google Scholar 

  2. Schroeder G, Gierczyk B, Łęska B, Wojciechowski G, Pankiewicz R, Brzezinski B, Bartl F (2002) J Mol Struct 607:9

    Article  CAS  Google Scholar 

  3. Afanase'ev WN, Grechin AG (2002) Uspekhi Chimii 71:878

    Google Scholar 

  4. Iwahori T, Mitsuishi L, Shiraga S, Nakajima N, Momose H, Ozaki Y, Tanigichi S, Awata H, Ono T, Takeuchi K (2000) Electrochim Acta 45:1509

    Article  CAS  Google Scholar 

  5. Wrigh PV (2002) MRS Bull 27:597

    Google Scholar 

  6. McBreen J, Lee HS, Yang XQ, Sun X (2000) J Power Sources 89:163

    Article  CAS  Google Scholar 

  7. Lisowska-Oleksiak A, Inerowicz HD (1999) J Power Sources 81–82:813

  8. Lisowska-Oleksiak A, Kazubowska K, Lis M (2000) Symposium of the Polish Supramolecular Chemistry Network, Olsztyn

  9. Morford RV, Kellam EC, Hofmann MA, Baldwin R, Allcock HR (2000) Solid State Ionics 133:171

    Article  CAS  Google Scholar 

  10. Saito Y, Yamamoto H, Nakamura O, Kageyama H, Ishikawa H, Miyoshi T, Matsuoka M (1999) J Power Sources 81–81:772

  11. Bełtowska-Brzezinska M (A. Mickiewicz University) (1991) PL Patent 151 145

  12. Biegler T, Rand DAJ, Woods R (1971) J Electroanal Chem 29:269

    Article  CAS  Google Scholar 

  13. Fuoss RM (1935) J Am Chem Soc 57:488

    CAS  Google Scholar 

  14. Onsager L (1926) Physik Z 27:388

    CAS  Google Scholar 

  15. Schroeder G, Gierczyk B (2002) Zastosowanie magnetycznego rezonansu jądrowego w chemii supramolekularnej, In: Chemia supramolekularna. Betagraf, Poznań, p 30

  16. Lo Surdo A, Wirth HE (1979) J Phys Chem 83:879

    Google Scholar 

  17. Tarascon JM, Guyomard D (1994) Solid State Ionics 69:293

    Article  CAS  Google Scholar 

  18. Guyomard D, Tarascon JM (1995) J Power Sources 54:92

    Article  CAS  Google Scholar 

  19. Chen HP, Fergus JW, Jang BZ (2000) J Electrochem Soc 147:399

    Article  CAS  Google Scholar 

  20. Abraham KM, Alamgir M (1993) J Power Sources 43–44:195

  21. Herr R (1990) Electochim Acta 35:1257

    Article  CAS  Google Scholar 

  22. Dudley JT, Wilkinson DP, Thomas G, LeVae R, Woo S, Blom H, Horvath C, Juzkow MW, Denis B, Juric P, Aghakian P, Dahn JR (1991) J Power Sources 35:59

    Article  CAS  Google Scholar 

  23. Cisak A, Werblan L (1986) Wysokoenergetyczne niewodne ogniwa galwaniczne. PWN, Warsaw

  24. Tobishima S-I, Okada T (1985) Electrochim Acta 30:1715

    Article  CAS  Google Scholar 

  25. Tobishima S-I, Arakawa M, Yamaki J-I (1988) Electrochim Acta 33:239

    Article  CAS  Google Scholar 

  26. Matsuda Y, Morita M, Yamada K, Hirai K (1985) J Electrochem Soc 132:2538

    CAS  Google Scholar 

  27. Morita M, Yamada O, Ishikawa M (1999) J Power Sources 81–82:425

  28. Watanabe H, Nohma T, Nakane I, Yoshimura S, Nishio K, Saito T (1993) J Power Sources 43–44:217

  29. Takahashi M, Yoshimura S, Nakane I, Nishio K, Saito T, Fujimoto M, Narukawa S, Hara M, Furukawa N (1993) J Power Sources 43–44:253

  30. Joho F, Rykart B, Imhof R, Novak P, Spahr ME, Monnier A (1999) J Power Sources 81–82:243

  31. Novak P, Joho F, Imhof R, Panitz J.Ch, Haas O (1999) J Power Sources 81–82:212

  32. Kumai K, Miyashiro H, Kobayashi Yo, Takei K, Ishikawa R (1999) J Power Sources 81–82:715

  33. Aurbach D, Gofer Y, Ben-Zion M, Aped P (1992) J Electroanal Chem 339:451

    CAS  Google Scholar 

  34. Kanamura K, Tamura H, Takehara Z (1992) J Electroanal Chem 333:127

    Article  CAS  Google Scholar 

  35. Egashira M, Takahashi H, Okada S, Yamaki J (2001) J Power Sources 92:267

    Article  CAS  Google Scholar 

  36. Kanamura K (1999) J Power Sources 81–82:123

  37. Johnson BA, White RE (1998) J Power Sources 70:48

    Article  CAS  Google Scholar 

  38. Peled E, Yamin H, (1979) Isr J Chem 18:131

    CAS  Google Scholar 

  39. Burrows B, Jasinski R (1968) J Electrochem Soc 115:365

    CAS  Google Scholar 

  40. Peled E (1979) J Electrochem Soc 126:2049

    Google Scholar 

  41. Peled E (1983) J Power Sources 9:253

    Article  CAS  Google Scholar 

  42. Wiesener E, Eckoldt U, Rahner D (1989) Electrochim Acta 34:1277

    Article  Google Scholar 

Download references

Acknowledgement

This work was performed within the research project supported by the Committee for Scientific Research (KBN), Poland. The authors wish to express their thanks to Dr hab. Piotr Barczyński (Department of Chemistry, A. Mickiewicz University in Poznań) for the numerical PC program for calculations according to the Fuoss–Krauss method.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Bełtowska-Brzezinska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bełtowska-Brzezinska, M., Łuczak, T., Węsierski, T. et al. Conductivity and interfacial behaviour of bis-1,4-dioxapentyl sulfate (IV) and 1,4,7-trioxaoctyl sulfate (IV) based electrolyte for lithium batteries. J Solid State Electrochem 7, 539–544 (2003). https://doi.org/10.1007/s10008-003-0435-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-003-0435-3

Keywords

Navigation