Skip to main content
Log in

Regularities of ionic solvation and association of lithium difluoro(oxalate)borate in dimethyl carbonate and sulfolane solvent systems

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Lithium difluoro(oxalate)borate (LiODFB) is acknowledged as a new type of electrolyte lithium salt with great potential for high-voltage lithium-ion batteries. Utilizing Raman spectroscopy, a conductivity tester, and a viscometer, this study concentrates on the solution structures and properties of LiODFB-solvent systems. The results demonstrated that in the sulfolane (SL) solvent, the main coordination form is among the Li+ cation. The ODFB anion and SL molecules form an ionic solvation as a contact ion pair (CIP). The content of free Li+ cations is very considerable, which is beneficial to improve the solubility and conductivity of LiODFB in the SL solvent. In the dimethyl carbonate (DMC) solvent, the main coordination form is ionic association as an aggregate (AGG). In addition, the solvent can display the comprehensive superiority of the SL solvent and LiODFB salt when a high concentration is dissolved in the SL-DMC as a mixed solvent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Tsujioka S, Takase H, Takahashi M, Sugimoto H, Koide M (2004) U.S. Patent No. 6,783,896. Patent and Trademark Office, Washington, DC

  2. Tsujioka S, Takase H, Takahashi M, IsonoY (2005) U.S. Patent No. 6,849,752. U.S. Patent and Trademark Office, Washington, DC

  3. Pacheco MA, Marshall CL (2011) Review of dimethyl carbonate (DMC) manufacture and its characteristics as a fuel additive. Energy Fuel 11:2–29

    Article  Google Scholar 

  4. Li J, Xie K, Lai Y, Zhang ZA, Li F, Hao X, Chen X, Liu Y (2010) Lithium oxalyldifluoroborate/carbonate electrolytes for LiFePO4/artificial graphite lithium-ion cells. J Power Sources 195(16):5344–5350. https://doi.org/10.1016/j.jpowsour.2010.03.038

    Article  CAS  Google Scholar 

  5. Liu J, Chen Z, Busking S, Amine K (2007) Lithium difluoro(oxalato)borate as a functional additive for lithium-ion batteries. Electrochem Commun 9(3):475–479. https://doi.org/10.1016/j.elecom.2006.10.022

    Article  CAS  Google Scholar 

  6. Zhang SS (2007) Electrochemical study of the formation of a solid electrolyte interface on graphite in a LiBC2O4 F2-based electrolyte. J Power Sources 163(2):713–718. https://doi.org/10.1016/j.jpowsour.2006.09.040

    Article  CAS  Google Scholar 

  7. Zhou H, Xiao K, Li J (2016) Lithium difluoro(oxalate)borate and LiBF 4 blend salts electrolyte for LiNi 0.5 Mn 1.5 O 4 cathode material. J Power Sources 302:274–282. https://doi.org/10.1016/j.jpowsour.2015.10.073

    Article  CAS  Google Scholar 

  8. Zhang SS (2006) An unique lithium salt for the improved electrolyte of Li-ion battery. Electrochem Commun 8(9):1423–1428. https://doi.org/10.1016/j.elecom.2006.06.016

    Article  CAS  Google Scholar 

  9. Henderson W (2014) Final progress report for linking ion solvation and lithium battery electrolyte properties. North Carolina State Univ., Raleigh

  10. Ue M, Mori S (1995) Mobility and ionic association of lithium salts in a propylene carbonate-ethyl methyl carbonate mixed solvent. J Electrochem Soc 142(8):2577–2581. https://doi.org/10.1149/1.2050056

    Article  CAS  Google Scholar 

  11. Han SD (2013) Delving into the properties and solution structure of solvent-lithium salt electrolytes for Li-ion batteries. Dissertations & Theses - Gradworks

  12. Seo DM, Borodin O, Han SD, Ly Q, Boyle PD, Henderson WA (2012) Electrolyte solvation and ionic association. I. Acetonitrile-lithium salt mixtures: intermediate and highly associated salts. J Electrochem Soc 159(9):A1489–A1500. https://doi.org/10.1149/2.035209jes

    Article  CAS  Google Scholar 

  13. Seo DM, Borodin O, Han SD, Boyle PD, Henderson WA (2012) Electrolyte solvation and ionic association II. Acetonitrile-lithium salt mixtures: highly dissociated salts. J Electrochem Soc 159(9):A1489–A1500. https://doi.org/10.1149/2.035209jes

    Article  CAS  Google Scholar 

  14. Seo DM, Borodin O, Balogh D, O'Connell M, Ly Q, Han SD, Passerini S, Henderson WA (2013) Electrolyte solvation and ionic association III. Acetonitrile-lithium salt mixtures—transport properties. J Electrochem Soc 160(8):A1061–A1070. https://doi.org/10.1149/2.018308jes

    Article  CAS  Google Scholar 

  15. Han SD, Borodin O, Allen JL, Seo DM, Mcowen DW, Yun SH, Henderson WA (2013) Electrolyte solvation and ionic association: IV. Acetonitrile-lithium difluoro(oxalato)borate (LiDFOB) mixtures. J Electrochem Soc 160(11):A2100–A2110. https://doi.org/10.1149/2.094309jes

    Article  CAS  Google Scholar 

  16. Han SD, Borodin O, Seo DM, Zhou ZB, Henderson WA (2012) Electrolyte solvation and ionic association: V. Acetonitrile-lithium bis(fluorosulfonyl)imide (LiFSI) mixtures. J Electrochem Soc 161:A2042–A2053

    Article  CAS  Google Scholar 

  17. Borodin O, Han SD, Daubert JS, Seo DM, Yun SH, Henderson WA (2015) Electrolyte solvation and ionic association. vi. acetonitrile-lithium salt mixtures: highly associated salts revisited. J Electrochem Soc 162(4):A501–A510 160 A501-A510

    Article  CAS  Google Scholar 

  18. Han SD, Allen JL, Boyle PD, Henderson WA (2012) Delving into the properties and solution structure of nitrile-lithium difluoro(Oxalato)borate (LiDFOB) electrolytes for Li-ion batteries, in: Symposium on rechargeable lithium and lithium ion batteries held during, pp 47–51

  19. Seo DM, Boyle PD, Sommer RD, Daubert JS, Borodin O, Henderson WA (2014) Solvate structures and spectroscopic characterization of LiTFSI electrolytes. J Phys Chem B 118(47):13601–13608. https://doi.org/10.1021/jp505006x

    Article  CAS  PubMed  Google Scholar 

  20. Han SD, Yun SH, Borodin O, Seo DM, Sommer RD, Jr VGY, Henderson WA (2015) Solvate structures and computational/spectroscopic characterization of LiPF6 electrolytes. J Phys Chem C 119(16):8492–8500. https://doi.org/10.1021/acs.jpcc.5b00826

    Article  CAS  Google Scholar 

  21. Liu Z, Li R, Chen J, Wu X, Zhang K, Mo J et al (2017) Theoretical investigation into suitable pore sizes of membranes for vanadium redox flow batteries. Chem Aust 4:2184–2189

    CAS  Google Scholar 

  22. Han SD, Allen JL, Jónsson E, Johansson P, Mcowen DW, Boyle PD, Henderson WA (2013) Solvate structures and computational/spectroscopic characterization of lithium difluoro(oxalato)borate (LiDFOB) electrolytes. J Phys Chem C 117(11):5521–5531. https://doi.org/10.1021/jp309102c

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support was from Natural Science Foundation of China (Grant No. 51371198) and the Natural Science Foundation of Hunan provincial (Grant No. 2017JJ2168).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongming Zhou.

Additional information

Highlights

• Describes the solution structures and properties of LiODFB-solvent systems.

• Combines microscopic and macroscopic methods.

• Comprehensive use of SL and DMC solvents combines the advantages of both.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Meng, P. & Zhou, H. Regularities of ionic solvation and association of lithium difluoro(oxalate)borate in dimethyl carbonate and sulfolane solvent systems. Ionics 24, 2147–2155 (2018). https://doi.org/10.1007/s11581-018-2463-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2463-0

Keywords

Navigation