Skip to main content
Log in

Probing interaction of atherogenic lysophosphatidylcholine with functionalized graphene nanosheets: theoretical modelling and experimental validation

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

The potential of graphene derivatives for theranostic applications depends on their compatibility with cellular and biomolecular components. Lysophosphatidylcholine (LPC), a lipid component present in oxidized low-density lipoproteins, microvesicles and free circulation in blood, plays a critical role in the pathophysiology of various diseases. Using density functional theory-based methods, we systematically investigated the interaction of atherogenic LPC molecule with different derivatives of graphene, including pristine graphene, graphene with defect, N-doped graphene, amine-functionalized graphene, various graphene oxides and hydroxylated graphene oxides. We observed that the adsorption of LPC on graphene derivatives is highly selective based on the orientation of the functional groups of LPC interacting with the surface of the derivatives. Hydroxylated graphene oxide exhibited the strongest interaction with LPC with adsorption energy of − 2.1 eV due to the interaction between the hydroxyl group on graphene and the phosphate group of LPC. The presence of aqueous medium further enhanced this interaction indicating favourable adsorption of LPC and graphene oxide in biological systems. Such strong interaction leads to substantial change in the electronic structure of the LPC molecule, which results in the activation of this molecule. In contrast, amine-modified graphene showed the least interaction. These theoretical results are in line with our experimental fluorescence spectroscopic data of LPC/1-anilino-8-napthalene sulfonic acid complex. Our present comprehensive investigation employing both theoretical and experimental methods provides a deeper understanding of graphene-lipid interaction, which holds paramount importance in the design and fabrication of graphene-based nanomaterials for biomedical applications.

Methods

In this study, we employed the density functional theory-based methods to investigate the electronic and structural properties of graphene derivatives and LPC molecule using the Quantum Espresso package. The exchange–correlation functional was described within generalized gradient approximation (GGA) as parameterized by Perdew, Burke and Ernzerhof (PBE). The valence electrons were represented using plane wave basis sets. `The Grimme’s dispersion method was used to include the van der Waals dispersion correction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Ligorio C, Zhou M, Wychowaniec JK et al (2019) Graphene oxide containing self-assembling peptide hybrid hydrogels as a potential 3D injectable cell delivery platform for intervertebral disc repair applications. Acta Biomater 92:92–103. https://doi.org/10.1016/j.actbio.2019.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mirza-Aghayan M, Heidarian M, Mohammadi M, Boukherroub R (2022) Synthesis and characterization of a novel multi-functionalized reduced graphene oxide as a pH-sensitive drug delivery material and a photothermal candidate. Appl Surf Sci 583:152568. https://doi.org/10.1016/j.apsusc.2022.152568

    Article  CAS  Google Scholar 

  3. Babavalian A, Tekie FSM, Ayazi H et al (2022) Reduced polydopamine coated graphene for delivery of Hset1 antisense as A photothermal and gene therapy of breast cancer. J Drug Deliv Sci Technol 103462. https://doi.org/10.1016/j.jddst.2022.103462

  4. Yang K, Feng L, Shi X, Liu Z (2013) Nano-graphene in biomedicine: theranostic applications. Chem Soc Rev 42:530–547. https://doi.org/10.1039/c2cs35342c

    Article  CAS  PubMed  Google Scholar 

  5. Cheraghi S, Taher MA, Karimi-Maleh H et al (2022) Novel enzymatic graphene oxide based biosensor for the detection of glutathione in biological body fluids. Chemosphere 287:132187. https://doi.org/10.1016/j.chemosphere.2021.132187

    Article  CAS  PubMed  Google Scholar 

  6. Yildiz G, Bolton-Warberg M, Awaja F (2021) Graphene and graphene oxide for bio-sensing: general properties and the effects of graphene ripples. Acta Biomater 131:62–79. https://doi.org/10.1016/j.actbio.2021.06.047

    Article  CAS  PubMed  Google Scholar 

  7. Zhao G, Feng Y, Xue L et al (2022) Anisotropic conductive reduced graphene oxide/silk matrices promote post-infarction myocardial function by restoring electrical integrity. Acta Biomater 139:190–203. https://doi.org/10.1016/j.actbio.2021.03.073

    Article  CAS  PubMed  Google Scholar 

  8. Ali R, Aziz MH, Gao S et al (2022) Graphene oxide/zinc ferrite nanocomposite loaded with doxorubicin as a potential theranostic mediu in cancer therapy and magnetic resonance imaging. Ceram Int 48:10741–10750. https://doi.org/10.1016/j.ceramint.2021.12.290

    Article  CAS  Google Scholar 

  9. Shannahan J (2017) The biocorona: a challenge for the biomedical application of nanoparticles. Nanotechnol Rev 6:345–353. https://doi.org/10.1515/ntrev-2016-0098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Walkey CD, Chan WCW (2012) Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev 41:2780–2799. https://doi.org/10.1039/c1cs15233e

    Article  CAS  PubMed  Google Scholar 

  11. Podila R, Chen R, Ke PC et al (2012) Effects of surface functional groups on the formation of nanoparticle-protein corona. Appl Phys Lett 101:263701. https://doi.org/10.1063/1.4772509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sengupta B, Gregory WE, Zhu J et al (2015) Influence of carbon nanomaterial defects on the formation of protein corona. RSC Adv 5:82395–82402. https://doi.org/10.1039/c5ra15007h

    Article  CAS  PubMed  Google Scholar 

  13. O’connell DJ, Bombelli FB, Pitek AS et al (2015) Characterization of the bionano interface and mapping extrinsic interactions of the corona of nanomaterials. Nanoscale 7:15268–15276. https://doi.org/10.1039/c5nr01970b

    Article  PubMed  Google Scholar 

  14. El Khalifi M, Bentin J, Duverger E et al (2016) Encapsulation capacity and natural payload delivery of an anticancer drug from boron nitride nanotube. Phys Chem Chem Phys 18:24994–25001. https://doi.org/10.1039/c6cp01387b

    Article  PubMed  Google Scholar 

  15. El Khalifi M, Duverger E, Gharbi T et al (2016) Theoretical use of boron nitride nanotubes as a perfect container for anticancer molecules. Anal Methods 8:1367–1372

    Article  Google Scholar 

  16. Duverger E, Balme S, Bechelany M et al (2019) Natural payload delivery of the doxorubicin anticancer drug from boron nitride oxide nanosheets. Appl Surf Sci 475:666–675. https://doi.org/10.1016/j.apsusc.2018.12.273

    Article  CAS  Google Scholar 

  17. Singh SK, Singh MK, Nayak MK et al (2011) Thrombus inducing property of atomically thin graphene oxide sheets. ACS Nano 5:4987–4996. https://doi.org/10.1021/nn201092p

    Article  CAS  PubMed  Google Scholar 

  18. Singh SK, Singh MK, Kulkarni PP et al (2012) Amine-modified graphene: thrombo-protective safer alternative to graphene oxide for biomedical applications. ACS Nano 6:2731–2740. https://doi.org/10.1021/nn300172t

    Article  CAS  PubMed  Google Scholar 

  19. Wilczek P, Major R, Lipinska L et al (2015) Thrombogenicity and biocompatibility studies of reduced graphene oxide modified acellular pulmonary valve tissue. Mater Sci Eng C 53:310–321. https://doi.org/10.1016/j.msec.2015.04.044

    Article  CAS  Google Scholar 

  20. Loh KP, Bao Q, Eda G, Chhowalla M (2010) Graphene oxide as a chemically tunable platform for optical applications. Nat Chem 2:1015–1024. https://doi.org/10.1038/nchem.907

    Article  CAS  PubMed  Google Scholar 

  21. Song Z, Wang Y, Xu Z (2015) Mechanical responses of the bio-nano interface: a molecular dynamics study of graphene-coated lipid membrane. Theor Appl Mech Lett 5:231–235. https://doi.org/10.1016/j.taml.2015.11.003

    Article  Google Scholar 

  22. Nigam P, Waghmode S, Louis M et al (2014) Graphene quantum dots conjugated albumin nanoparticles for targeted drug delivery and imaging of pancreatic cancer. J Mater Chem B 2:3190–3195. https://doi.org/10.1039/c4tb00015c

    Article  CAS  PubMed  Google Scholar 

  23. Frost R, Jönsson GE, Chakarov D et al (2012) Graphene oxide and lipid membranes: interactions and nanocomposite structures. Nano Lett 12:3356–3362. https://doi.org/10.1021/nl203107k

    Article  CAS  PubMed  Google Scholar 

  24. Liu X, Chen KL (2015) Interactions of graphene oxide with model cell membranes: probing nanoparticle attachment and lipid bilayer disruption. Langmuir 31:12076–12086. https://doi.org/10.1021/acs.langmuir.5b02414

    Article  CAS  PubMed  Google Scholar 

  25. Wu L, Zeng L, Jiang X (2015) Revealing the nature of interaction between graphene oxide and lipid membrane by surface-enhanced infrared absorption spectroscopy. J Am Chem Soc 137:10052–10055. https://doi.org/10.1021/jacs.5b03803

    Article  CAS  PubMed  Google Scholar 

  26. Hernández Rosas JJ, Ramírez Gutiérrez RE, Escobedo-Morales A, Chigo Anota E (2011) First principles calculations of the electronic and chemical properties of graphene, graphene, and graphene oxide. J Mol Model 17:1133–1139. https://doi.org/10.1007/s00894-010-0818-1

    Article  CAS  PubMed  Google Scholar 

  27. Guo J, Zhang T, Hu C, Fu L (2015) A three-dimensional nitrogen-doped graphene structure: a highly efficient carrier of enzymes for biosensors. Nanoscale 7:1290–1295. https://doi.org/10.1039/c4nr05325g

    Article  CAS  PubMed  Google Scholar 

  28. Adel R, Ebrahim S, Shokry A et al (2021) Nanocomposite of CuInS/ZnS and nitrogen-doped graphene quantum dots for cholesterol sensing. ACS Omega 6:2167–2176. https://doi.org/10.1021/acsomega.0c05416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang T, Zhu S, Jiang X (2015) Toxicity mechanism of graphene oxide and nitrogen-doped graphene quantum dots in RBCs revealed by surface-enhanced infrared absorption spectroscopy. Toxicol Res (Camb) 4:885–894. https://doi.org/10.1039/c4tx00138a

    Article  CAS  Google Scholar 

  30. Khodadadei F, Safarian S, Ghanbari N (2017) Methotrexate-loaded nitrogen-doped graphene quantum dots nanocarriers as an efficient anticancer drug delivery system. Mater Sci Eng C 79:280–285. https://doi.org/10.1016/j.msec.2017.05.049

    Article  CAS  Google Scholar 

  31. Chigo Anota E, Escobedo-Morales A, Salazar Villanueva M et al (2013) On the influence of point defects on the structural and electronic properties of graphene-like sheets: A molecular simulation study. J Mol Model 19:839–846. https://doi.org/10.1007/s00894-012-1612-z

    Article  CAS  PubMed  Google Scholar 

  32. Anota EC, Juárez AR, Castro M, Cocoletzi HH (2013) A density functional theory analysis for the adsorption of the amine group on graphene and boron nitride nanosheets. J Mol Model 19:321–328. https://doi.org/10.1007/s00894-012-1539-4

    Article  CAS  PubMed  Google Scholar 

  33. Chigo Anota E, Torres Soto A, Cocoletzi GH (2014) Studies of graphene–chitosan interactions and analysis of the bioadsorption of glucose and cholesterol. Appl Nanosci 4:911–918. https://doi.org/10.1007/s13204-013-0283-0

    Article  CAS  Google Scholar 

  34. Duverger E, Picaud F, Stauffer L, Sonnet P (2017) Simulations of a graphene nanoflake as a nanovector to improve ZnPc phototherapy toxicity: from vacuum to cell membrane. ACS Appl Mater Interfaces 9:37554–37562. https://doi.org/10.1021/acsami.7b09054

    Article  CAS  PubMed  Google Scholar 

  35. Duverger E, Bentin J, Delabrousse E et al (2017) Ab initio study of azomethine derivative cancer drug on boron nitride and graphene nanoflakes. J Nanotechnol Nanomed Nanobiotechnol 4:1–6. https://doi.org/10.24966/ntmb-2044/100014

    Article  Google Scholar 

  36. Mlaouah M, Tangour B, El Khalifi M et al (2018) The encapsulation of the gemcitabine anticancer drug into grapheme nest: a theoretical study. J Mol Model 24:1–9. https://doi.org/10.1007/s00894-018-3627-6

    Article  CAS  Google Scholar 

  37. Kamel M, Raissi H, Hashemzadeh H, Mohammadifard K (2020) Theoretical elucidation of the amino acid interaction with graphene and functionalized graphene nanosheets: insights from DFT calculation and MD simulation. Amino Acids 52:1465–1478. https://doi.org/10.1007/s00726-020-02905-5

    Article  CAS  PubMed  Google Scholar 

  38. Dallavalle M, Bottoni A, Calvaresi M, Zerbetto F (2018) Functionalization pattern of graphene oxide sheets controls entry or produces lipid turmoil in phospholipid membranes. ACS Appl Mater Interfaces 10:15487–15493. https://doi.org/10.1021/acsami.8b03224

    Article  CAS  PubMed  Google Scholar 

  39. Li H, Ji H, Zhang R et al (2020) Hydrogen bonding rather than cation bridging promotes graphene oxide attachment to lipid membranes in the presence of heavy metals. Environ Sci Nano 7:2240–2251. https://doi.org/10.1039/d0en00366b

    Article  CAS  Google Scholar 

  40. Schmitz G, Ruebsaamen K (2010) Metabolism and atherogenic disease association of lysophosphatidylcholine. Atherosclerosis 208:10–18. https://doi.org/10.1016/j.atherosclerosis.2009.05.029

    Article  CAS  PubMed  Google Scholar 

  41. Matsumoto T, Kobayashi T, Kamata K (2007) Role of lysophosphatidylcholine (LPC) in atherosclerosis. Curr Med Chem 14:3209–3220. https://doi.org/10.2174/092986707782793899

    Article  CAS  PubMed  Google Scholar 

  42. Rabini RA, Galassi R, Fumelli P et al (1994) Reduced Na+-K+-ATPase activity and plasma lysophosphatidylcholine concentrations in diabetic patients. Diabetes 43:915–919. https://doi.org/10.2337/diab.43.7.915

    Article  CAS  PubMed  Google Scholar 

  43. Zhao Z, Xiao Y, Elson P et al (2007) Plasma lysophosphatidylcholine levels: potential biomarkers for colorectal cancer. J Clin Oncol 25:2696–2701. https://doi.org/10.1200/JCO.2006.08.5571

    Article  CAS  PubMed  Google Scholar 

  44. Yin M, Tan S, Li X et al (2016) Identification of phosphatidylcholine and lysophosphatidylcholine as novel biomarkers for cervical cancers in a prospective cohort study. Tumor Biol 37:5485–5492. https://doi.org/10.1007/s13277-015-4164-x

    Article  CAS  Google Scholar 

  45. Liu P, Zhu W, Chen C et al (2020) The mechanisms of lysophosphatidylcholine in the development of diseases. Life Sci 247:117443. https://doi.org/10.1016/j.lfs.2020.117443

    Article  CAS  PubMed  Google Scholar 

  46. Diehl P, Nienaber F, Zaldivia MTK et al (2019) Lysophosphatidylcholine is a major component of platelet microvesicles promoting platelet activation and reporting atherosclerotic plaque instability. Thromb Haemost 119:1295–1310. https://doi.org/10.1055/s-0039-1683409

    Article  PubMed  Google Scholar 

  47. Quinn MT, Parthasarathy S, Steinberg D (1988) Lysophosphatidylcholine: a chemotactic factor for human monocytes and its potential role in atherogenesis. Proc Natl Acad Sci 85:2805–2809. https://doi.org/10.1073/pnas.85.8.2805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Corrêa R, Silva LFF, Ribeiro DJS et al (2020) Lysophosphatidylcholine induces NLRP3 inflammasome-mediated foam cell formation and pyroptosis in human monocytes and endothelial cells. Front Immunol 2927. https://doi.org/10.3389/fimmu.2019.02927

  49. Kumari S, Singh MK, Singh SK et al (2014) Nanodiamonds activate blood platelets and induce thromboembolism. Nanomedicine 9:427–440. https://doi.org/10.2217/nnm.13.23

    Article  CAS  PubMed  Google Scholar 

  50. Giannozzi P, Baroni S, Bonini N et al (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens matter 21:395502. https://doi.org/10.1088/0953-8984/21/39/395502

    Article  PubMed  Google Scholar 

  51. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  PubMed  Google Scholar 

  52. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104. https://doi.org/10.1063/1.3382344

    Article  CAS  PubMed  Google Scholar 

  53. Marzari N, Vanderbilt D, De Vita A, Payne MC (1999) Thermal contraction and disordering of the Al (110) surface. Phys Rev Lett 82:3296. https://doi.org/10.1103/PhysRevLett.82.3296

    Article  CAS  Google Scholar 

  54. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188. https://doi.org/10.1103/PhysRevB.13.5188

    Article  Google Scholar 

  55. Giannozzi P, Andreussi O, Brumme T et al (2017) Advanced capabilities for materials modelling with Quantum ESPRESSO. J Phys Condens matter 29:465901

    Article  CAS  PubMed  Google Scholar 

  56. Johari P, Shenoy VB (2011) Modulating optical properties of graphene oxide: role of prominent functional groups. ACS Nano 5:7640–7647. https://doi.org/10.1021/nn202732t

    Article  CAS  PubMed  Google Scholar 

  57. Information NC for B (2022) PubChem compound summary for CID 5311264, Lysophosphatidylcholine. https://pubchem.ncbi.nlm.nih.gov/compound/Lysophosphatidylcholine. Accessed 6 Sep 2022

  58. Boukhvalov DW, Katsnelson MI (2008) Modeling of graphite oxide. J Am Chem Soc 130:10697–10701. https://doi.org/10.1021/ja8021686

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

K. M. acknowledges the support and the resources provided by “PARAM Shivay Facility” under the National Supercomputing Mission, Government of India, at the Indian Institute of Technology, Varanasi.

Funding

S. K. S. acknowledges the Department of Science and Technology (DST)—Nanomission [DST/NM/NB/2018/40 (G)], Government of India, for the financial support. K. M. acknowledges DST-INSPIRE (DST/INSPIRE/04/2018/002482), Government of India, for the financial support. A. R. P. is highly thankful to Indian Council of Medical Research, New Delhi, for providing senior research fellowship [BMI/11(53)/2022] to carry out this research work. P. Y. and S. K. B. are sincerely thankful for their research fellowships from the University Grants Commission (UGC) and Council of Scientific and Industrial Research (CSIR), India, respectively.

Author information

Authors and Affiliations

Authors

Contributions

A. R. P. developed, performed simulations, experiments and wrote the manuscript. S. K. S. and K. M. designed the research, analysed the data and wrote the manuscript. P. Y., S. K. B., J. S., and S. G. D. analysed the data and edited the manuscript.

Corresponding authors

Correspondence to Sunil K. Singh or Krishnakanta Mondal.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panigrahi, A.R., Yadav, P., Beura, S.K. et al. Probing interaction of atherogenic lysophosphatidylcholine with functionalized graphene nanosheets: theoretical modelling and experimental validation. J Mol Model 29, 310 (2023). https://doi.org/10.1007/s00894-023-05717-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05717-y

Keywords

Navigation