Skip to main content
Log in

Theoretical study on the interactions of Anemopsis californica compounds with graphene monolayers: A DFT perspective

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

The interaction of biomolecules with carbon-based nanostructure, like graphene, has a wide range of applications like biosensing, drug delivery, and diagnostics. Anemopsis californica, Mexico endemic plant, has gained attention because its extract has been used as an adjuvant in the treatment of pain, inflammation, and infection, and its antimicrobial, anticancer, and antioxidant properties. These characteristics added to the mechanical and chemical resistance of graphene suggesting that bionanocomposite has various potential applications. It provides a comprehensive theoretical study of the absorption of representative compounds of A. californica extract (elemicin, methyl eugenol, and piperitone) over the surface of graphene. The nature of interactions are determined based on Density Functional Theory methods using the base and method B3LYP/6-31G(d,p). The results obtained from the energy minimizations as well as the determination of the MEP and HOMO–LUMO molecular orbitals determine the adsorption on graphene through energetically favorable and stable interactions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. C. Sanchez, K.J. Shea, S. Kitagawa, Chem. Soc. Rev. 40, 471 (2011)

    Article  CAS  Google Scholar 

  2. D.-Y. Wang, M. Gong, H.-L. Chou, C.-J. Pan, H.-A. Chen, Y. Wu, M.-C. Lin, M. Guan, J. Yang, C.-W. Chen, Y.-L. Wang, B.-J. Hwang, C.-C. Chen, H. Dai, J. Am. Chem. Soc. 137, 1587–1592 (2015)

    Article  CAS  Google Scholar 

  3. L. Muzi, F. Tardani, C. la Mesa, A. Bonincontro, A. Bianco, G. Risuleo, Nanotechnology 27, 155704 (2016)

    Article  Google Scholar 

  4. L. Li, J. Liu, X. Yang, J. Huang, D. He, X. Guo, L. Wan, X. He, K. Wang, Nanotechnology 27, 105603 (2016)

    Article  Google Scholar 

  5. E. Hirata, C. Ménard-Moyon, E. Venturelli, H. Takita, F. Watari, A. Bianco, A. Yokoyama, Nanotechnology 24, 435101 (2013)

    Article  Google Scholar 

  6. V. Kumar, G. Nath, R.K. Kotnala, P.S. Saxena, A. Srivastava, RSC Adv. 3, 14634 (2013)

    Article  CAS  Google Scholar 

  7. R. Mo, T. Jiang, W. Sun, Z. Gu, Biomaterials 50, 67–74 (2015)

    Article  CAS  Google Scholar 

  8. K.S. Novoselov, A.K. Geim, Sv. Morozov, D. Jiang, M.I. Katsnelson, Iv. Grigorieva, Sv. Dubonos, A.A. Firsov, Nature 438, 197–200 (2005)

    Article  CAS  Google Scholar 

  9. C. Lee, X. Wei, J.W. Kysar, J. Hone, Science 1979(321), 385–388 (2008)

    Article  Google Scholar 

  10. M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Nano Lett. 8, 3498–3502 (2008)

    Article  CAS  Google Scholar 

  11. R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Science 1979(320), 1308–1308 (2008)

    Article  Google Scholar 

  12. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Nano Lett. 8, 902–907 (2008)

    Article  CAS  Google Scholar 

  13. V. Georgakilas, M. Otyepka, A.B. Bourlinos, V. Chandra, N. Kim, K.C. Kemp, P. Hobza, R. Zboril, K.S. Kim, Chem. Rev. 112, 6156–6214 (2012)

    Article  CAS  Google Scholar 

  14. A.L. Medina, M.E. Lucero, F.O. Holguin, R.E. Estell, J.J. Posakony, J. Simon, M.A. O’Connell, J. Agric. Food Chem. 53, 8694–8698 (2005)

    Article  CAS  Google Scholar 

  15. C.N. Kaminski, S.L. Ferrey, T. Lowrey, L. Guerra, S. Van Slambrouck, W.F.S. Steelant, Oncol. Lett. 1, 711–715 (2010)

    Article  Google Scholar 

  16. C.L. Del-Toro-Sánchez, M. Gutiérrez-Lomelí, E. Lugo-Cervantes, F. Zurita, M.A. Robles-García, S. Ruiz-Cruz, J.A. Aguilar, J.A. Morales-Del Rio, P.J. Guerrero-Medina, J. Chem. 2015, 1–8 (2015)

    Article  Google Scholar 

  17. N. Torres-Gómez, R.D. Ávila-Avilés, A.R. Vilchis-Nestor, Mundo Nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología. 13, 29–43 (2020)

    Article  Google Scholar 

  18. R.D. Ávila-Avilés, M.A. Camacho-López, E. Castro-Longoria, A. Dorazco-González, N. Hernández-Guerrero, A.R. Vilchis-Nestor, MRS Adv. 5, 3397–3406 (2020)

    Article  Google Scholar 

  19. R.D. Ávila-Avilés, M.A. Camacho-López, I.G. Becerril-Juárez, E. Castro-Longoria, A.R. Vilchis-Nestor, MRS Adv. 7, 12–17 (2022)

    Article  Google Scholar 

  20. H.T. Larijani, M. Jahanshahi, M.D. Ganji, M.H. Kiani, Phys. Chem. Chem. Phys. 19, 1896–1908 (2017)

    Article  CAS  Google Scholar 

  21. H. Vovusha, B. Sanyal, RSC Adv. 5, 67427–67434 (2015)

    Article  CAS  Google Scholar 

  22. P. Singla, M. Riyaz, S. Singhal, N. Goel, Phys. Chem. Chem. Phys. 18, 5597–5604 (2016)

    Article  CAS  Google Scholar 

  23. A. Shokuhi Rad, M. Esfahanian, S. Maleki, G. Gharati, J. Sulfur Chem. 37, 176–188 (2016)

    Article  CAS  Google Scholar 

  24. A.S. Rad, Surf. Sci. 645, 6–12 (2016)

    Article  CAS  Google Scholar 

  25. C.H. Suresh, G.S. Remya, P.K. Anjalikrishna, WIREs Comput. Mol. Sci. (2022). https://doi.org/10.1002/wcms.1601

    Article  Google Scholar 

  26. A. Suvitha, S. Periandy, P. Gayathri, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 138, 357–369 (2015)

    Article  CAS  Google Scholar 

  27. D. Inostroza Mendoza, O. Yáñez Osses, R. Pino Rios, W. Tiznado, in Proceedings of MOL2NET 2016, International Conference on Multidisciplinary Sciences, 2nd edition (MDPI, Basel, Switzerland, 2016), p. 17007.

Download references

Acknowledgments

This research was financial supported by CONACYT Grant No. 280518 and Grant A1-S-34533. The authors are grateful for the computing time granted by the LANCAD and CONACYT in the Supercomputer Hybrid Cluster “Xiuhcoatl” at General Coordination of Information and Communications Technologies (CGSTIC) of Cinvestav México http://clusterhibrido.cinvestav.mx/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Vilchis-Nestor.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 48 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ávila-Avilés, R.D., Vilchis-Nestor, A.R. Theoretical study on the interactions of Anemopsis californica compounds with graphene monolayers: A DFT perspective. MRS Advances 8, 95–102 (2023). https://doi.org/10.1557/s43580-023-00504-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-023-00504-6

Navigation