Skip to main content
Log in

Quantum chemical modeling of the thermodynamics of the formation of Au(III), Pd(II), and Pt(II) chloride complexes

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Quantitative prediction of physical properties of liquids and equilibrium constants is important for many applications. Computational methods based on either explicit or implicit solvent models can be used to approximate thermodynamics of complexation. A practical method for calculating the stability constant of d8 chlorocomplexes (PdCl42−, PtCl42−, AuCl4) in aqueous solution has been developed by using DFT and DLPNO-CCSD with the SMD solvation model and 100 unique explicit water molecules. Stability constants have been calculated by using methods, such as DFT/PBE0-D3, DLPNO-CCSD, DLPNO-CCSD-DK, and DLPNO-CCSD(T), and basis sets, such as def2-TZVPD, def2-TZVPP, ma-def2-TZVP, ma-DKH-def2-TZVP, SARC-TZVP, and SARC-TZVPP. Calculations using DFT/PBE0-D3/def2-TZVPD and DLPNO-CCSD-DK/ma-DKH-Def2-TZVP/SARC-DKH-TZVP with SMD solvation with explicit waters are found to have errors of 2–3 log units relative to experimental data. The best results are obtained by using 8 explicit waters for d8 aqua complexes, 14 explicit waters for d8 chlorocomplexes, and 4 explicit waters for chloride ion.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary material.

Code availability

We have used publicly available source code which is freely available on the Internet.

References

  1. Petrov AI, Dergachev VD (2019) Palladium(II) ion mediated disulfide/thiolate interconversion: predicting the disulfide group state from first principles. J Phys Chem A 123:4873–4882. https://doi.org/10.1021/acs.jpca.9b00740

    Article  CAS  Google Scholar 

  2. Cruywagen JJ, Kriek RJ (2007) Complexation of palladium(II) with chloride and hydroxide. J Coord Chem 60:439–447. https://doi.org/10.1080/00958970600873588

    Article  CAS  Google Scholar 

  3. Polotnyanko NA, Khodakovskii IL (2014) Thermodynamic properties of Pd chloride complexes and the Pd2 + (aq) ion in aqueous solutions. Geochem Int 52:46–56

    Article  CAS  Google Scholar 

  4. Boily J-F, Seward TM (2005) Palladium(II) chloride complexation: spectrophotometric investigation in aqueous solutions from 5 to 125 °C and theoretical insight into Pd-Cl and Pd-OH2 interactions. Geochim Cosmochim Acta 69:3773–3789. https://doi.org/10.1016/j.gca.2005.03.015

    Article  CAS  Google Scholar 

  5. Usher A, McPhail DC, Brugger J (2009) A spectrophotometric study of aqueous Au(III) halide-hydroxide complexes at 25–80 °C. Geochim Cosmochim Acta 73:3359–3380. https://doi.org/10.1016/j.gca.2009.01.036

    Article  CAS  Google Scholar 

  6. Mironov IV, Makotchenko EV (2009) The hydrolysis of AuCl 4- and the stability of aquachlorohydroxocomplexes of gold(III) in aqueous solution. J Solution Chem 38:725–737. https://doi.org/10.1007/s10953-009-9400-9

    Article  CAS  Google Scholar 

  7. Stirling A, Bakó I, Kocsis L, Hajba L, Mink J (2009) Pt(II)-ion hydration: structural and vibrational characteristics from theory and experiment. Int J Quantum Chem 109:2591–2598. https://doi.org/10.1002/qua.22151

    Article  CAS  Google Scholar 

  8. Bowron DT, Beret EC, Martin-Zamora E, Soper AK, Sánchez Marcos E (2012) Axial structure of the Pd(II) aqua ion in solution. J Am Chem Soc 134:62–967. https://doi.org/10.1021/ja206422w

    Article  CAS  Google Scholar 

  9. Hofer TS, Randolf BR, Rode BM, Persson I (2009) The hydrated platinum(ii) ion in aqueous solution - a combined theoretical and EXAFS spectroscopic study, Dalton Trans 9:1512–1515. https://doi.org/10.1039/b819248k.

  10. Torrico F, Pappalardo RR, Marcos ES, Martínez JM (2006) Hydration structure and dynamic properties of the square planar Pt(II) aquaion compared to the Pd(II) case. Theor Chem Acc 115:196–203. https://doi.org/10.1007/s00214-005-0059-z

    Article  CAS  Google Scholar 

  11. Ayala R, Sánchez Marcos E, Díaz-Moreno S, Armando Solé V, Muñoz-Páez A (2001) Geometry and hydration structure of Pt(II) square planar complexes [Pt(H2O)4]2+ and [PtCl4]2- as studied by X-ray absorption spectroscopies and quantum-mechanical computations. J Phys Chem B 105:7588–7593. https://doi.org/10.1021/jp010326+

    Article  CAS  Google Scholar 

  12. Deeth RJ, Elding LI (1996) Theoretical modeling of water exchange on [Pd(H2O)4]2+, [Pt(H2O)4]2+, and trans-[PtCl2(H2O)2]. Inorg Chem 35:5019–5026. https://doi.org/10.1021/ic950335v

    Article  CAS  Google Scholar 

  13. Martínez JM, Torrico F, Pappalardo RR, Marcos ES (2004) Understanding the hydration structure of square-planar aquaions: The [Pd(H2O)4]2+ case. J Phys Chem B 108:15851–15855. https://doi.org/10.1021/jp049119a

    Article  CAS  Google Scholar 

  14. Shah SAA, Hofer TS, Fatmi MQ, Randolf BR, Rode BM (2006) A QM/MM MD simulation study of hydrated Pd2+. Chem Phys Lett 426:301–305. https://doi.org/10.1016/j.cplett.2006.05.132

    Article  CAS  Google Scholar 

  15. Naidoo KJ, Klatt G, Koch KR, Robinson DJ (2002) Geometric hydration shells for anionic platinum group metal chloro complexes. Inorg Chem 41:1845–1849. https://doi.org/10.1021/ic010719n

    Article  CAS  Google Scholar 

  16. Caminiti R, Carbone M, Sadun C (1998) Palladium (II) and platinum (II) aqueous solutions. Evidence for the solvation of the [PdCl4]2− and [PtCl4]2− ions. J Mol Liq 75:149–158. https://doi.org/10.1016/S0167-7322(98)82003-5

    Article  CAS  Google Scholar 

  17. Beret EC, Martínez JM, Pappalardo RR, Marcos ES, Doltsinis NL, Marx D (2008) Explaining asymmetric solvation of Pt(II) versus Pd(II) in aqueous solution revealed by ab initio molecular dynamics simulations. J Chem Theory Comput 4:2108–2121. https://doi.org/10.1021/ct800010q

    Article  CAS  Google Scholar 

  18. Arooj M, Park JK (2008) Geometrical structures of the first solvation shell of the [PdCl 4 ] 2 Core: charge-dipole vs dipole-dipole interaction of ((Pd II… }Solvent). Bull Korean Chem Soc 29:2295–2298. https://doi.org/10.5012/bkcs.2008.29.11.2295

    Article  CAS  Google Scholar 

  19. Tarazona-Vasquez F, Balbuena PB (2007) Dendrimer-tetrachloroplatinate precursor interactions. 1. Hydration of Pt(II) species and PAMAM outer pockets. J Phys Chem A 111:932–944. https://doi.org/10.1021/jp065014r

    Article  CAS  Google Scholar 

  20. Riccardi D, Guo HB, Parks JM, Gu B, Liang L, Smith JC (2013) Cluster-continuum calculations of hydration free energies of anions and group 12 divalent cations. J Chem Theory Comput 9:555–569. https://doi.org/10.1021/ct300296k

    Article  CAS  Google Scholar 

  21. Kemp DD, Gordon MS (2005) Theoretical study of the solvation of fluorine and chlorine anions by water. J Phys Chem A 109:7688–7699. https://doi.org/10.1021/jp058086b

    Article  CAS  Google Scholar 

  22. Kamarchik E, Bowman JM (2010) Quantum vibrational analysis of hydrated ions using an ab initio potential. J Phys Chem A 114:12945–12951. https://doi.org/10.1021/jp108255k

    Article  CAS  Google Scholar 

  23. Basdogan Y, Groenenboom MC, Henderson E, De S, Rempe SB, Keith JA (2020) Machine learning-guided approach for studying solvation environments. J Chem Theory Comput 16:633–642. https://doi.org/10.1021/acs.jctc.9b00605

    Article  CAS  Google Scholar 

  24. Wang Q, Suzuki K, Nagashima U, Tachikawa M, Yan S (2013) Semiempirical investigations on the stabilization energies and ionic hydrogen-bonded structures of F−(H2O) n and Cl − (H2O) n (n = 1–4) clusters. J Theor Appl Phys 7:1–10. https://doi.org/10.1186/2251-7235-7-7

    Article  CAS  Google Scholar 

  25. Bankura A, Santra B, DiStasio RA, Swartz CW, Klein ML, Wu X (2015) A systematic study of chloride ion solvation in water using van der Waals inclusive hybrid density functional theory. Mol Phys 113:2842–2854. https://doi.org/10.1080/00268976.2015.1059959

    Article  CAS  Google Scholar 

  26. Ye Q, Zhou J, Zhao T, Zhao H, Chu W, Sheng Z, Chen X, Marcelli A, Luo Y, Wu Z (2012) Identification of 13- and 14-coordinated structures of first hydrated shell of [AuCl4]- acid aqueous solution by combination of MD and XANES. J Phys Chem B 116:7866–7873. https://doi.org/10.1021/jp3026623

    Article  CAS  Google Scholar 

  27. Mirzaei S, Ivanov MV, Timerghazin QK (2019) Improving performance of the SMD solvation model: Bondi radii improve predicted aqueous solvation free energies of ions and p Ka values of thiols. J Phys Chem A 123:9498–9504. https://doi.org/10.1021/acs.jpca.9b02340

    Article  CAS  Google Scholar 

  28. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396. https://doi.org/10.1021/jp810292n

    Article  CAS  Google Scholar 

  29. Kirby ME, Simperler A, Krevor S, Weiss DJ, Sonnenberg JL (2018) Computational tools for calculating log β values of geochemically relevant uranium organometallic complexes. J Phys Chem A 122:8007–8019. https://doi.org/10.1021/acs.jpca.8b06863

    Article  CAS  Google Scholar 

  30. Garcia-Ratés M, Becker U, Neese F (2021) Implicit solvation in domain based pair natural orbital coupled cluster (DLPNO-CCSD) theory. J Comput Chem 42:1959–1973. https://doi.org/10.1002/jcc.26726

    Article  CAS  Google Scholar 

  31. Barca GMJ, Bertoni C, Carrington L, Datta D, De Silva N, Deustua JE, Fedorov DG, Gour JR, Gunina AO, Guidez E, Harville T, Irle S, Ivanic J, Kowalski K, Leang SS, Li H, Li W, Lutz JJ, Magoulas I, Mato J, Mironov V, Nakata H, Pham BQ, Piecuch P, Poole D, Pruitt SR, Rendell AP, Roskop LB, Ruedenberg K, Sattasathuchana T, Schmidt MW, Shen J, Slipchenko L, Sosonkina M, Sundriyal V, Tiwari A, Galvez Vallejo JL, Westheimer B, Włoch M, Xu P, Zahariev F, Gordon MS (2020) Recent developments in the general atomic and molecular electronic structure system. J Chem Phys 152(15):154102. https://doi.org/10.1063/5.0005188

    Article  CAS  Google Scholar 

  32. Rappoport D, Furche F (2010) Property-optimized Gaussian basis sets for molecular response calculations. J Chem Phys 133:1–11. https://doi.org/10.1063/1.3484283

    Article  CAS  Google Scholar 

  33. Tao J, Perdew JP, Staroverov VN, Scuseria GE (2003) Climbing the density functional ladder: non-empirical meta-generalized gradient approximation designed for molecules and solids. Phys Rev Lett 91:146401. https://doi.org/10.1103/PhysRevLett.91.146401

    Article  CAS  Google Scholar 

  34. Petrov AI, Golovnev NN, Dergachev ID, Leshok AA (2013) Complex formation of bismuth(III) with 2-mercaptoethanesulfonic and 3-mercaptopropanesulfonic acids: Experimental and theoretical study. Polyhedron 50:59–65. https://doi.org/10.1016/j.poly.2012.09.059

    Article  CAS  Google Scholar 

  35. Petrov AI, Dergachev ID, Trubina SV, Erenburg SB, Lutoshkin MA, Golovnev NN, Kondrasenko AA, Dergachev VD (2014) Complexation of Bi(III) with 3-mercaptopropionic acid in aqueous solutions: a combined experimental and theoretical study. RSC Adv 4:52384–52392. https://doi.org/10.1039/C4RA07572B

    Article  CAS  Google Scholar 

  36. Jensen JH (2015) Predicting accurate absolute binding energies in aqueous solution: thermodynamic considerations for electronic structure methods. Phys Chem Chem Phys 17:12441–12451. https://doi.org/10.1039/C5CP00628G

    Article  CAS  Google Scholar 

  37. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132(15):154104. https://doi.org/10.1063/1.3382344

    Article  CAS  Google Scholar 

  38. Neese F, Wennmohs F, Becker U, Riplinger C (2020) The ORCA quantum chemistry program package. J Chem Phys 152(22):224108. https://doi.org/10.1063/5.0004608

    Article  CAS  Google Scholar 

  39. Papajak E, Zheng J, Xu X, Leverentz HR, Truhlar DG (2011) Perspectives on basis sets beautiful: seasonal plantings of diffuse basis functions. J Chem Theory Comput 7:3027–3034. https://doi.org/10.1021/ct200106a

    Article  CAS  Google Scholar 

  40. Zheng J, Xu X, Truhlar DG (2011) Minimally augmented Karlsruhe basis sets. Theor Chem Acc 128:295–305. https://doi.org/10.1007/s00214-010-0846-z

    Article  CAS  Google Scholar 

  41. Rolfes JD, Neese F, Pantazis DA (2020) All-electron scalar relativistic basis sets for the elements Rb–Xe. J Comput Chem 41:1842–1849. https://doi.org/10.1002/jcc.26355

    Article  CAS  Google Scholar 

  42. Bryantsev VS, Diallo MS, Goddard WA (2008) Calculation of solvation free energies of charged solutes using mixed cluster/continuum models. J Phys Chem B 112:9709–9719. https://doi.org/10.1021/jp802665d

    Article  CAS  Google Scholar 

  43. Gutten O, Rulíšek L (2013) Predicting the stability constants of metal-ion complexes from first principles. Inorg Chem 52:10347–10355. https://doi.org/10.1021/ic401037x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Numerical computations were performed on the cluster MVS-1000 M of the Institute of computational modeling SB RAS.

Funding

The research was funded by RFBR, Krasnoyarsk Territory, and Krasnoyarsk Regional Fund of Science, project number 20–43-243003.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have equal contributions. All authors of this paper have read and approved the final version submitted. All the authors are aware and approve this submission.

Corresponding author

Correspondence to Alexander I. Petrov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Consent for publication

The contents of this manuscript are not now under consideration for publication elsewhere. The contents of this manuscript have not been copyrighted or published previously. There are no directly related manuscripts or abstracts, published or unpublished, by any authors of this paper. The contents of this manuscript will not be copyrighted, submitted, or published elsewhere, while acceptance by the Journal is under consideration.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 380 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrov, A.I. Quantum chemical modeling of the thermodynamics of the formation of Au(III), Pd(II), and Pt(II) chloride complexes. J Mol Model 28, 391 (2022). https://doi.org/10.1007/s00894-022-05381-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05381-8

Keywords

Navigation