Skip to main content
Log in

Brueckner Doubles variation of W1 theory (W1BD) adapted to pseudopotential: W1BDCEP theory

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Composite methods are the combination of ab initio calculations used to achieve high precision in the face of a computational reduction. Weizmann-n theories (n = 1, 2, 3, and 4) stand out for presenting a high precision, and a version of the W1 theory is the W1BD theory that uses ab initio Brueckner Doubles (BD) methods. One way to reduce the computational cost of composite methods and maintain accuracy is to use pseudopotentials in the calculation steps; in this context, W1BDCEP composite method was developed from the respective W1BD all-electron version by considering the implementation of compact effective pseudopotential (CEP). The test set used to evaluate the theory were 8 proton affinities (PA0), 46 electron affinities (EA0), 54 ionization energies (IE0), 80 enthalpies of formation (ΔfH0), and 10 bond dissociation energies (BDE). The mean absolute deviation values (MADs) for W1BD and for the version adapted to the pseudopotential, W1BDCEP, were similar, with values of 0.97 kcal mol−1 and 1.03 kcal mol−1, respectively, when the properties PA0, EA0, IE0, and ΔfH0 were evaluated together. Comparing the versions of the theories that employ ab initio Brueckner Doubles calculations with the W1 and W1CEP theories, it is possible to observe that the W1BD and W1BDCEP theories are more accurate than the W1 theory (MADW1 = 1.25 kcal mol−1) and W1CEP (MADW1CEP = 1.44 kcal mol−1), proving the accuracy of using the BD method. Pseudopotential reduces computational time by up to 30% and thus enables more accurate calculations with less computational time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Karton A (2016) A computational chemist’s guide to accurate thermochemistry for organic molecules: a computational chemist’s guide to accurate thermochemistry for organic molecules. WIREs Comput Mol Sci 6:292–310. https://doi.org/10.1002/wcms.1249

    Article  CAS  Google Scholar 

  2. Martin JML, de Oliveira G (1999) Towards standard methods for benchmark quality ab initio thermochemistry—W1 and W2 theory. J Chem Phys 111:1843–1856. https://doi.org/10.1063/1.479454

    Article  CAS  Google Scholar 

  3. Sana M, Leroy G, Peeters D, Wilante C (1988) Theoretical study of the heats of formation of organic compounds containing the substituents CH3, CF3, NH2, NF2, NO2, and F. J Mol Struct (Thoechem) 26:249–274. https://doi.org/10.1016/0166-1280(88)80147-7

    Article  Google Scholar 

  4. Wang Q, Mannan MS (2010) Prediction of thermochemical properties for gaseous ammonia oxide. J Chem Eng Data 55:5128–5132. https://doi.org/10.1021/je1006899

    Article  CAS  Google Scholar 

  5. Pereira DH, Ducati LC, Rittner R, Custodio R (2014) A study of the rotational barriers for some organic compounds using the G3 and G3CEP theories. J Mol Model 20:2199. https://doi.org/10.1007/s00894-014-2199-3

    Article  CAS  PubMed  Google Scholar 

  6. de Aguiar Filho SQ, Costa AMF, Ribeiro IHS et al (2019) Theoretical study of the internal rotational barriers of fluorine, chlorine, bromine, and iodine-substituted ethanes. Comput Theor Chem 1166:112589. https://doi.org/10.1016/j.comptc.2019.112589

    Article  CAS  Google Scholar 

  7. Chen L, Xu J, Zhang M et al (2020) Theoretical study on novel orthorhombic ternary monocarbides M0.5Re0.5C (M=V, Nb, Ta) from first-principles calculations. Ceram Int 46:24624–24634. https://doi.org/10.1016/j.ceramint.2020.06.251

    Article  CAS  Google Scholar 

  8. Barnes EC, Petersson GA, Montgomery JA et al (2009) Unrestricted Coupled Cluster and Brueckner Doubles variations of W1 theory. J Chem Theory Comput 5:2687–2693. https://doi.org/10.1021/ct900260g

    Article  CAS  PubMed  Google Scholar 

  9. Heerdt G, Pereira DH, Custodio R, Morgon NH (2015) W1CEP theory for computational thermochemistry. Comput Theor Chem 1067:84–92. https://doi.org/10.1016/j.comptc.2015.05.011

    Article  CAS  Google Scholar 

  10. Pereira DH, Ramos AF, Morgon NH, Custodio R (2011) Implementation of pseudopotential in the G3 theory for molecules containing first-, second-, and non-transition third-row atoms. J Chem Phys 135:034106. https://doi.org/10.1063/1.3609241

    Article  CAS  PubMed  Google Scholar 

  11. Pople JA, Head-Gordon M, Fox DJ et al (1989) Gaussian-1 theory: a general procedure for prediction of molecular energies. J Chem Phys 90:5622–5629. https://doi.org/10.1063/1.456415

    Article  CAS  Google Scholar 

  12. Curtiss LA, Raghavachari K, Redfern PC, Pople JA (1997) Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation. J Chem Phys 106:1063–1079. https://doi.org/10.1063/1.473182

    Article  CAS  Google Scholar 

  13. Curtiss LA, Raghavachari K, Redfern PC et al (1998) Gaussian-3 (G3) theory for molecules containing first and second-row atoms. J Chem Phys 109:7764–7776. https://doi.org/10.1063/1.477422

    Article  CAS  Google Scholar 

  14. Curtiss LA, Redfern PC, Raghavachari K, Pople JA (1999) Gaussian-3 theory: a variation based on third-order perturbation theory and an assessment of the contribution of core-related correlation. Chem Phys Lett 313:600–607. https://doi.org/10.1016/S0009-2614(99)01082-9

    Article  CAS  Google Scholar 

  15. Curtiss LA, Redfern PC, Raghavachari K (2007) Gaussian-4 theory. J Chem Phys 126:084108. https://doi.org/10.1063/1.2436888

    Article  CAS  PubMed  Google Scholar 

  16. Curtiss LA, Brand H, Nicholas JB, Iton LE (1991) Predicted proton affinities of H3SiO, H3SiOH, H3SiOSiH3, and H3SiOAlH. Chem Phys Lett 184:6. https://doi.org/10.1016/0009-2614(91)87190-M

    Article  Google Scholar 

  17. Curtiss LA, Redfern PC, Raghavachari K (2011) G n theory. WIREs Comput Mol Sci 1:810–825. https://doi.org/10.1002/wcms.59

    Article  CAS  Google Scholar 

  18. Peterson KA, Feller D, Dixon DA (2012) Chemical accuracy in ab initio thermochemistry and spectroscopy: current strategies and future challenges. Theor Chem Acc 131:1079. https://doi.org/10.1007/s00214-011-1079-5

    Article  CAS  Google Scholar 

  19. DeYonker NJ, Cundari TR, Wilson AK et al (2006) Computation of gas-phase enthalpies of formation with chemical accuracy: the curious case of 3-nitroaniline. J Mol Struct (Thoechem) 775:77–80. https://doi.org/10.1016/j.theochem.2006.08.018

    Article  CAS  Google Scholar 

  20. Tajti A, Szalay PG, Császár AG et al (2004) HEAT: high accuracy extrapolated ab initio thermochemistry. J Chem Phys 121:11599–11613. https://doi.org/10.1063/1.1811608

    Article  CAS  PubMed  Google Scholar 

  21. Pereira DH, Rocha CMR, Morgon NH, Custodio R (2015) G3(MP2)-CEP theory and applications for compounds containing atoms from representative first, second and third row elements of the periodic table. J Mol Model 21:204. https://doi.org/10.1007/s00894-015-2757-3

    Article  CAS  PubMed  Google Scholar 

  22. Rocha CMR, Pereira DH, Morgon NH, Custodio R (2013) Assessment of G3(MP2)//B3 theory including a pseudopotential for molecules containing first-, second-, and third-row representative elements. J Chem Phys 139:184108. https://doi.org/10.1063/1.4826519

    Article  CAS  PubMed  Google Scholar 

  23. de Silva C, S, Custodio R, (2018) Empirical corrections in the G3X and G3X(CCSD) theories combined with a compact effective pseudopotential. Theor Chem Acc 137:24. https://doi.org/10.1007/s00214-018-2206-3

    Article  CAS  Google Scholar 

  24. de Silva C, S, Pereira DH, Custodio R, (2016) G4CEP: a G4 theory modification by including pseudopotential for molecules containing first-, second- and third-row representative elements. J Chem Phys 144:204118. https://doi.org/10.1063/1.4952427

    Article  CAS  Google Scholar 

  25. Porto CM, Santana LC, Morgon NH (2020) W2SDD theory for computational thermochemistry: study of the addition of hydrogen halide to propene. Theor Chem Acc 139:121. https://doi.org/10.1007/s00214-020-02630-y

    Article  CAS  Google Scholar 

  26. da Rocha NL, Custodio R (2020) On the role of vibrational selective scaling for the calculation of enthalpies of formation using a composite method. Theor Chem Acc 139:38. https://doi.org/10.1007/s00214-020-2552-9

    Article  CAS  Google Scholar 

  27. Handy NC, Pople JA, Head-Gordon M et al (1989) Size-consistent Brueckner theory limited to double substitutions. Chem Phys Lett 164:185–192. https://doi.org/10.1016/0009-2614(89)85013-4

    Article  CAS  Google Scholar 

  28. Stevens WJ, Basch H, Krauss M (1984) Compact effective potentials and efficient shared-exponent basis sets for the first- and second-row atoms. J Chem Phys 81:6026–6033. https://doi.org/10.1063/1.447604

    Article  Google Scholar 

  29. Stevens WJ, Krauss M, Basch H, Jasien PG (1992) Relativistic compact effective potentials and efficient, shared-exponent basis sets for the third-, fourth-, and fifth-row atoms. Can J Chem 70:612–630. https://doi.org/10.1139/v92-085

    Article  CAS  Google Scholar 

  30. Parthiban S, Martin JML (2001) Assessment of W1 and W2 theories for the computation of electron affinities, ionization potentials, heats of formation, and proton affinities. J Chem Phys 114:6014–6029. https://doi.org/10.1063/1.1356014

    Article  CAS  Google Scholar 

  31. Brueckner KA (1954) Nuclear saturation and two-body forces II. Tensor Forces Phys Rev 96:508–516. https://doi.org/10.1103/PhysRev.96.508

    Article  CAS  Google Scholar 

  32. Nesbet RK (1958) Brueckner’s theory and the method of superposition of configurations. Phys Rev 109:1632–1638. https://doi.org/10.1103/PhysRev.109.1632

    Article  CAS  Google Scholar 

  33. Larsson S, Smith V (1969) Analysis of the 2S ground state of lithium in terms of natural and best overlap (Brueckner) spin orbitals with implications for the Fermi contact term. Phys Rev 178:137–152

    Article  CAS  Google Scholar 

  34. Chiles RA, Dykstra CE (1981) An electron pair operator approach to coupled cluster wave functions. Application to He2, Be2, and Mg2 and comparison with CEPA methods. J Chem Phys 74:4544–4556. https://doi.org/10.1063/1.441643

    Article  CAS  Google Scholar 

  35. Stanton JF, Gauss J, Bartlett RJ (1992) On the choice of orbitals for symmetry breaking problems with application to NO3. J Chem Phys 97:5554–5559. https://doi.org/10.1063/1.463762

    Article  CAS  Google Scholar 

  36. Custodio R, Gomes ASP, Sensato FR, dos Trevas JM, S, (2006) Analysis of the segmented contraction of basis functions using density matrix theory. J Comput Chem 27:1822–1829. https://doi.org/10.1002/jcc.20514

    Article  CAS  PubMed  Google Scholar 

  37. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, ScalmaniG, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP,Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta Jr JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R,Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA ,Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision D01. Gaussian Inc., Wallingford

  38. Ochterski JW, Thermochemistry in Gaussian. (accessed October, 2021). http://www.gaussian.com/g_whitepap/thermo.htm

  39. Jursic BS (1998) C-H and C-halogen bond dissociation energies for fluorinated and chlorinated methane evaluated with hybrid B3LYP density functional theory methods and their comparison with experimental data and the CBS-Q ab initio computational approach. J Mol Struct (Thoechem) 422:253–257. https://doi.org/10.1016/S0166-1280(97)00114-

    Article  CAS  Google Scholar 

  40. Wood GPF, Radom L, Petersson GA et al (2006) A restricted-open-shell complete-basis-set model chemistry. J Chem Phys 125:094106. https://doi.org/10.1063/1.2335438

    Article  CAS  PubMed  Google Scholar 

  41. Li X-H, Tang Z-X, Jalbout AF et al (2008) A DFT study of bond dissociation energies of several alkyl nitrate and nitrite compounds. J Mol Struct (Thoechem) 854:76–80. https://doi.org/10.1016/j.theochem.2007.12.027

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the PROPESQ/Federal University of Tocantins (Edital para tradução de artigos científicios da Universidade Federal do Tocantins—PROPESQ/UFT) and the Editage (www.editage.com) for English language editing.

Funding

The authors received support from CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Coordination for the Improvement of Higher Education Personnel—Brazil), Financing Code 001 CAPES, the Center for Computational Engineering and Sciences (financial support from FAPESP—São Paulo State Research Council, grant numbers 2013/08293–7 and 2017/11485–6) and the National Center for High-Performance Processing (Centro Nacional de Processamento de Alto Desempenho – CENAPAD) in São Paulo for computational resources.

Author information

Authors and Affiliations

Authors

Contributions

Thiago Soares Silva: conceptualization, methodology, validation, formal analysis. Állefe Barbosa Cruza: visualization, software, formal analysis. Karinna Gomes Oliveira Rodrigues: writing—review and editing; visualization; software. Douglas Henrique Pereira: writing—original draft; writing—review and editing; conceptualization; methodology; formal analysis.

Corresponding author

Correspondence to Douglas Henrique Pereira.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper belongs to Topical Collection XXI - Brazilian Symposium of Theoretical Chemistry (SBQT2021)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, T.S., Cruz, Á.B., Rodrigues, K.G.O. et al. Brueckner Doubles variation of W1 theory (W1BD) adapted to pseudopotential: W1BDCEP theory. J Mol Model 28, 284 (2022). https://doi.org/10.1007/s00894-022-05281-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05281-x

Keywords

Navigation