Skip to main content
Log in

Experimental and theoretical studies of the influence of alkyl groups on the photovoltaic properties of (E)-6-((2, 3-dihydroxylnaphthalene)diazenyl)-1H-benzoisoquinoline-1,3-dione-based organic solar cell

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

A Correction to this article was published on 03 September 2022

This article has been updated

Abstract

The manipulation of the active dye material for application in dye-sensitized solar cell (DSSC) using simple or bulky group substituents is necessary for improved dye performance. Herein, we carried out a combined experimental and theoretical studies of different alkylated novel reactive (E)-6-(2,3-dihydroxyl naphthalene diazinyl)-1H-benzoisoquinoline-1,3-dione azo-based dyes using spectral (FTIR, UV–visible, and NMR) analysis and electronic structure theory method based first principle density functional theory (DFT) calculations to investigate the molecular electronic properties, structural analysis, excitation behavior, and the theoretical potential application in photovoltaic cell. The synthesized azo dye (azoD) was theoretically modeled by varying the number of alkyl chains denoted as AzoD1, AzoD2, AzoD3, and AzoD4 to represent azo dyes having ten (10), twelve (12), fourteen (14), and sixteen (16) alkyl chain length respectively. From the natural bond orbital (NBO) analysis, the higher stabilization energies, 227.80 and 227.77 kcal/mol respectively, recorded for AzoD1 and AzoD4 may be due to extra orbital contribution by π*(N21–N22) to π*C54–C56 31.19 eV for AzoD1 and π*(N21–N22) → π*(C53–C55) 31.43 eV AzoD4 confirming that chain length affected the orbital interaction of the molecules. The driving force (ΔGinject) of electron injection into the TiO2 surface (− 1.92 to − 1.93) shown in this study is indicative that alkylated azo dyes are good for improved DSSCs performance. Again, the open circuit voltage (Voc) of 1.090 (AzoD1), 1.092 (AzoD2), 1.093 (AzoD3), and 1.095 (AzoD4) are also evidence of the suitability of azo dyes as photosensitizers. All the spectroscopic analysis, FTIR, UV–visible, and NMR combined with theoretical calculations, provided accurate data for characterizing the titled azo dye compound and showed that it has good photophysical properties. The presence of alkyl groups and chain length promoted the stability of the dyes thereby making them suitable for application in DSSCs. Increase in chain length as well enhanced the electron injection into the conduction band of the semiconductor.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data are contained within the manuscript and manuscript supporting information document (SI).

Change history

References

  1. Joseph I, Louis H, Unimuke TO, Etim IS, Orosun MM, Odey J (2020) An overview of the operational principles, light harvesting and trapping technologies, and recent advances of the dye sensitized solar cells. Appl Solar Energy 56(5):334–363

    Article  Google Scholar 

  2. Sreenath MC, Joe IH, Rastogi VK (2018) Experimental and theoretical in-vestigation of third-order nonlinear optical properties of azo dye 1-(2, 5-Dimethoxy-phenylazo)-naphthalen-2-ol by Z-scan technique and quantum chemical computations. Dyes Pigm 157:163–178

    Article  CAS  Google Scholar 

  3. Şener İ, Şener N, Gür M (2018) Synthesis, structural analysis, and absorption properties of disperse benzothiazol-derivative mono-azo dyes. J Mol Struct 1174:12–17

    Article  CAS  Google Scholar 

  4. Seyednoruziyan B, Zamanloo MR, Shamkhali AN, Alizadeh T, Noruzi S, Aslani S (2020) Improving the optoelectronic efficiency of novel meta-azo dye-sensi-tized TiO2 semiconductor for DSSCs. Spectrochim Acta Part A 247:119143

    Article  CAS  Google Scholar 

  5. Zhang H, Chen ZE, Hu J, Hong Y (2019) Novel rod-shaped organic sensitizers for liquid and quasi-solid-state dye-sensitized solar cells. Electrochim Acta 295:934–941

    Article  CAS  Google Scholar 

  6. Lee W, Choi J, Namgoong JW, Kim SH, Sun KC, Jeong SH, Yoo K, Ko MJ, Kim JP (2014) The effect of five-membered heterocyclic bridges and ethoxy-phenyl substitution on the performance of phenoxazine-based dye-sensitized solar cells. Dyes Pigments 104:185–193

    Article  CAS  Google Scholar 

  7. Lin FS, Priyanka P, Fan MS, Vegiraju S, Ni JS, Wu YC, … Ho KC (2020) Metal-free efficient dye-sensitized solar cells based on thioalkylated bithiophenyl organic dyes. J Mater Chem C 8(43):15322–15330

  8. Kumar VS, Mary YS, Pradhan K, Brahman D, Mary YS, Thomas R, … Van Alsenoy C (2020) Synthesis, spectral properties, chemical descriptors and light harvesting studies of a new bioactive azo imidazole compound. J MolStruct 1199:127035

  9. Zhi-Dan S, Jiang-shan Z, Karuppasamy A, Xue-Hai J, Qi-ying X (2020) Design of high-performance P-type sensitizers with pyridium derivatives as the acceptor by theoretical calculations. Rsc Adv 10:10569–10576

    Article  Google Scholar 

  10. Hitler L, Obieze CE, Joseph OO, Izubundu BO, Azuaga T, Tomsmith OU, Tabe NN (2021) Synthesis, characterization, DFT and TD-DFT studies of (E)-5-((4,6-dichloro-1,3,5- triazine-2-yl) amino)-4-hydroxy-3-(phenyldiazenyl) naphthalene-2,7-diylbis (hydrogen sulphite). SN Appl Sci 3:712

    Article  CAS  Google Scholar 

  11. Benkhaya S, M’rabet S, El Harfi A (2020) Classifications, properties, recent synthesis and applications of azo dyes. Heliyon 6(1):e03271

    Article  PubMed  PubMed Central  Google Scholar 

  12. Asif-Mahmood S, Ud-Din K, Usman AR (2014) Theoretical designing of novel heterocyclic azo dyes for dye sensitized solar cells. J comput Electron 3:1033–1041

    Article  CAS  Google Scholar 

  13. Omri N, Bu Y (2020) TD-DFT Studies on sp and sp2-hybridized single vacancy defected [60] fullerene: electronic excitation and nonlinear optical properties of C54 [9-4] and C59 [8-5] isomers. J Phys Chem A 69(3):3033–3040

    Google Scholar 

  14. Osman OI (2017) DFT study of the structure, reactivity, natural bond orbital and hyper polarizability of thaizole azo dyes. Int J Mol Sci 18(2):239

    Article  PubMed Central  CAS  Google Scholar 

  15. Joseph OO, Hitler L, John AA, Yusuf LM, Emmanuel AB, Onyebuenyi IB (2021) Experimental and theoretical studies of the electrochemical properties of mono azo dyes derived from 2-nitro-1-naphthol, 1-nitroso-2-naphthol and C.1. disperse yellow 56 commercial dye in dye sensitized solar cell. J Mol Struc. 1241:130615

    Article  CAS  Google Scholar 

  16. Bonomo M, Saccone D, Magistris C, Di Carlo A, Barolo C, Dini D (2017) Effect of Alkyl chain length on the sensitizing action of substituted non symmetric squaraines for p-type dye-sensitized solar cells. ChemElectroChem. https://doi.org/10.1002/celc.201700191

    Article  Google Scholar 

  17. Su-Qin Z, Q-ying X, Li-Xiao K, Karuppasamay A, Xue-Hai J (2020) Theoretical study of a triarylamine-based p-type sensitizer. ACS Omega 5:23491–23496

    Article  CAS  Google Scholar 

  18. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR et al (2009) Gaussian 09. Revision A I. Gaussian Inc., Wallingford

    Google Scholar 

  19. Tripathi A, Ganjoo A, Chetti P (2020) Influence of internal acceptor and thiophine based π-acceptor in D-π-A system on photophysical and charge transport properties for efficient DSSCs: a DFT insight. Sol Energy 209:194–205

    Article  CAS  Google Scholar 

  20. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange-correlation functional using the coloumb attenuating method (CAM-B#LYP). Chem Phys Lett 339(1–3):51–57

    Article  CAS  Google Scholar 

  21. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33(5):580–592

    Article  PubMed  CAS  Google Scholar 

  22. Swarnalatha N, Gunasekaran S, Nagarajan M, Srinivasan S, Sankari G, Ramkumaar GR (2015) Vibrational, UV spectra, NBO, first order hyperpolarizability and HOMO–LUMO analysis of carvedilol. Spectrochim Acta Part A Mol Biomol Spectrosc 136:567–578

    Article  CAS  Google Scholar 

  23. Varsányi G, Kovner MA, Láng L (1973) Assignments for vibrational spectra of 700 benzene derivatives. Akademiai Kiado

    Google Scholar 

  24. Amul B, Muthu S, Raja M, Sevvanthi S (2019) Spectral, DFT and molecular docking investigations on etodolac. J Mol Struct 1195:747–761

    Article  CAS  Google Scholar 

  25. Pavia DL, Lampman GM, Kriz GS (1979) Introduction to Spectroscopy: A guide for students of Organic Chemistry. W. B. Saunders Co, Philadelphia

    Google Scholar 

  26. Ayyappan S, Sundaraganesan N, Aroulmoji V, Murano E, Sebastian S (2010) Molecular structure, vibrational spectra and DFT molecular orbital calculations (TD-DFT and NMR) of the antiproliferative drug methotrexate. Spectrochim Acta Part A Mol Biomol Spectrosc 77(1):264–275

    Article  CAS  Google Scholar 

  27. Kalasinsky KS (1983) GC/FTIR applications in pesticide chemistry. J Chromatogr Sci 21(6):246–253

    Article  CAS  Google Scholar 

  28. Bacsik Z, Mink J, Keresztury G (2005) FTIR spectroscopy of the atmosphere part 2. Applications. Appl Spectrosc Rev 40(4):327–390

    Article  CAS  Google Scholar 

  29. Bassey VM, Apepende CG, Idante PS, Louis H, Emori W, Cheng CR, Agwupuye JA, Unimuke TO, Wei K, Asogwa FC (2022) Vibrational characterization and molecular electronic investigation of 2-acetyl-5-methylfuran using FT-IR, -Raman, UV-VIS, NMR and DFT methods. J Fluoresc 32(3):1005–1017

  30. Lai TY, Guo JD, Fettinger JC, Nagase S, Power PP (2019) Facile insertion of ethylene into a group 14 element-carbon bond: effects of the HOMO-LUMO energy gap on reactivity. Chem Commun 55(3):405–407

    Article  CAS  Google Scholar 

  31. Shinizu A, Ishizaki Y, Horiuchi S, Hirose T, mMatsuda K, Sato H, Yshida JI (2020) HOMO-LUMO energy gap tuning of π-conjugated zwiterions composed of electron-donating anion and electron accepting cation. J Org Chem 63:409–506

    Google Scholar 

  32. Emori W, Ogunwale G J, Louis H, Agwamba E C, Wei K, Unimuke T O, Cheng C-R, Ejiofor E U, Asogwa F C, Adeyinka A S (2022) Spectroscopic (UV-vis, FT-IR, FT-Raman, and NMR) analysis, structural benchmarking, molecular properties, and the in-silico cerebral anti-ischemic activity of 2-amino-6-ethoxybenzothiazole. J Mol Struct 1265:133318

    Article  CAS  Google Scholar 

  33. Farzaneh Z, Javad B (2018) Natural pigments in dye-sensitized solar cell (DSSCs): a DFT-TD-DFT study. J Iran Chem Soc. https://doi.org/10.1007/S13738-018-1561-2

    Article  Google Scholar 

  34. Kazarian SG, Chan KLA (2006) Applications of ATR-FTIR spectroscopic imaging to biomedical samples. Biochim Biophys Acta (BBA)-Biomembranes 1758(7):858–867

    Article  CAS  Google Scholar 

  35. Malekshahi MB, Nemati AK, Badiel A, Bazargan MH (2012) Electron transfer in dye-sensitized solar cells. J Optoelectron Biomed Mat 4(4):49–57

    Google Scholar 

  36. Enuju LT, Seung HL, Jae KL, Su SY, Eun JK, Kyung BY (2005) A strategy to increase the efficiency of dye-sensitized TiO2 solar cell operated by photoexcitation of dye-to-TiO2 charge -transfer bands. J Phys Chem B 109:22513–22522

    Article  CAS  Google Scholar 

  37. Pearson P, Bergstron R, Lunell S (2000) Quantum chemical study of photoinjection processes in dye-sensitized TiO2 nanoparticles. J Phys Chem B 104:10348–10351

    Article  CAS  Google Scholar 

  38. Benko G, Kallioien J, Korppi-Tommola JEI, Yartsev AP, Sundstron V (2002) Photoinduced ultrafast dye-to semiconductor electron injection from nonthermalized and thermalized donor states. J AM Chem Soc 124(3):489–493

    Article  PubMed  CAS  Google Scholar 

  39. Andrei VP, Vladimir B (2010) Study of the transport mechanism in molecular self-assembling devices. App Phys A 98:717–734

    Article  CAS  Google Scholar 

  40. Nelson J (1999) Continous-time random-walk model of electron transport in nanocrystalline TiO2 electrodes. Phys Rev B 59:15374

    Article  CAS  Google Scholar 

  41. Minghui D, Shuqing H, Zhexun Y, Dongmei L, Yanhong L, Yubai B, Qingbo M (2011) Ehanced electron injection/transportation in mesoporous TiO2 dye-sensitized solar cells. Front Optoeletron China 4:65. https://doi.org/10.1007/s12200-011-0204-3

    Article  Google Scholar 

  42. Hongxia W, Patrick GN, Laurence P, Shaik MZ, Michael G (2010) Transport and interfacial transport of electron in dye-sensitized solar cell utilizing a Co(dbbiP)2 redox shuttle. J Phys Chem C 114(33):14300–14306

    Article  CAS  Google Scholar 

  43. Yongguang T, Jihuai W, Zhang L, Xin H, Jia D, Jinbiao J, Panfeng G, Jianming L, Miaoliang H, Yungfang H (2017) Modulated CH3NH3PbI3-xBrx film for efficient perovskite solar cells exceeding 18%. Sci Rep 7:44603

    Article  CAS  Google Scholar 

  44. Tian H, Boschloo G, Hagfeldt A (2018) Molecular devices for solar energy conversion and storage. Springer. https://doi.org/10.1007/978-981-10-5924-7

    Article  Google Scholar 

  45. Yousuke O, Kosuke Y, Joji O (2017) Photovoltaic performances of type-II dye-sensitized solar cells based on catechol dye sensitizers: retardation of back-electron transfer by PET (photinduced electron transfer). Front Mat Chem. https://doi.org/10.1039/C7QM00211D

    Article  Google Scholar 

  46. Karki IB, Nakarmi JJ, Mandal PK, Chatterjee S (2013) Effect of organic dyes on the performance of ZnO based dye-sensitized solar ces. Appl Sol Energ 49:30–45

    Article  Google Scholar 

  47. Vasudevanpillain B, Miodrag M, Dehong H, Peter HL (2004) Intermittent single-molecule interfacial electron transfer dynamics. J Am Chem Soc 126(30):9374–9381

    Article  CAS  Google Scholar 

  48. Louis H, Onyebuenyi IB, Odey JO, Igbalagh AT, Mbonu MT, Eno EA, … Offiong OE (2021) Synthesis, characterization, and theoretical studies of the photovoltaic properties of novel reactive azonitrobenzaldehyde derivatives. RSC Adv 11(45):28433–28446

  49. Louis H, Ifediora LP, Enudi OC, Unimuke TO, Asogwa FC, Moshood YL (2021) Evaluation of the excited state dynamics, photophysical properties, and the influence of donor substitution in a donor-π-acceptor system. J Mol Model 27(10):1–18

    Article  CAS  Google Scholar 

  50. Sandhia B, Amirruddin AK, Pandey AK, Samykano M, Muhammad SA, Kamal S, Tyagi VV (2021) Advancements in the development of various types of dye-sensitized solar cells: a comparative review. Energy Eng. https://doi.org/10.32604/EE.2021.016157

    Article  Google Scholar 

  51. Barnes PR, Miettunen K, Li X, Anderson AY, Bessho T (2013) Interpretation of optoelectronic transient and charge extraction measurements in dye-sensitized solar cells. Adv Mater 25(13):1881–1922. https://doi.org/10.1002/adma.201201372

    Article  CAS  PubMed  Google Scholar 

  52. Costa RD, Guldi DM (2014) Carbon nanomaterials as integrative components in dye-sensitized solar cells. Solar Cells 11:12. https://doi.org/10.1104/pp.116.2.571

    Article  Google Scholar 

  53. Hosseinnezhad M, Rouhani S (2016) Characteristics of nanostructure dye-sensitized solar cells using food dyes. Opto-Electron Rev 24(1):34–39

    Article  Google Scholar 

  54. Louis H, Enudi OC, Odey JO, Onyebuenyi IB, Igbalagh AT, Unimuke TO, Ntui TN (2021) Synthesis, characterization, DFT, and TD-DFT studies of (E)-5-((4, 6-dichloro-1, 3, 5-triazin-2-yl) amino)-4-hydroxy-3-(phenyldiazenyl) naphthalene-2, 7-diylbis (hydrogen sulfite). SN Appl Sci 3(7):1–14

    Article  CAS  Google Scholar 

  55. Liu Z, Lu T, Chen Q (2020) An sp-hybridized all-carbocation ring, cyclo[18] carbon: electronic structure, electronic spectrum, and opticalnonlinearity. Carbon 165:461

    Article  CAS  Google Scholar 

  56. Liu Z, Hua S, Wu G (2018) Extended first hyperpolarizability of quasi-octupolar molecules by halogenated methylation: whether the iodine atom is the best choice. J Phys Chem C 122(37):21548–21556

    Article  CAS  Google Scholar 

  57. Oluigbo CJ, Xu Y, Louis H, Yusuf BA, Yaseen W, Ullah N, Xie J (2021) Controllable fabrication of abundant nickel-nitrogen doped CNT electrocatalyst for robust hydrogen evolution reaction. Appl Surf Sci 562:150161

    Article  CAS  Google Scholar 

  58. Ekpenyong EE, Louis H, Anyama CA, Ogar JO, Utsu PM, Ayi AA (2020) Experimental and density functional theory studies on the adsorption behavior of selected gas molecules on Mg (II) coordination polymer constructed with 1, 3, 5-benzenetricarboxylates. J Mol Struct 1220:128641

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to all those who have supported this work in any way.

Author information

Authors and Affiliations

Authors

Contributions

Hitler Louis: conceptualization, designed, softwares, resources, analysis, and editing. Fredrick C. Asogwa: results analysis, editing, validation, project administration, and manuscript draft. Tomsmith O. Unimuke: validation, analysis, and editing. Umar S. Ameuru: methodology and resources. Thomas O. Magu: methodology and editing. Kayode A. Adegoke: editing and proofreading. Ernest C. Agwamba: results analysis and editing.

Corresponding authors

Correspondence to Fredrick C. Asogwa or Hitler Louis.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised due to minor updates in the 5th author's last name.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 370 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asogwa, F.C., Louis, H., Ameuru, U.S. et al. Experimental and theoretical studies of the influence of alkyl groups on the photovoltaic properties of (E)-6-((2, 3-dihydroxylnaphthalene)diazenyl)-1H-benzoisoquinoline-1,3-dione-based organic solar cell. J Mol Model 28, 245 (2022). https://doi.org/10.1007/s00894-022-05228-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05228-2

Keywords

Navigation