Skip to main content

Advertisement

Log in

Quantum Chemical Elucidation on the Optoelectronic Properties of N2-(4-Aminophenyl)Pyridine-2,5-Diamine Based Dyes for Solar Cells Utilization

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

Demand for CO2 free renewable energy source never cease. Renewable energy is germane for energy crisis solution. Solar cell as a renewable energy is relevant to solve energy issues and global warming. However, modulation of metal free organic dyes is efficient to achieve a dependable dye-sensitizer for solar cells purposes. In this study, three sets of new organic D − π − A sensitizers consisting of three dyes in each set were reported. The optoelectronic and chemical properties were examined via density functional theory (DFT) and time dependent density functional theory (TD-DFT) techniques. It was observed that 6H-borolo[3,4-b]pyrazine containing molecules (CX3, TX3 and PX3) have a shorter bond length (∆r) and small dihedral angle (ɸ1) which impart lower energy gap (∆Eg) and longer absorption wavelength (λmax). The calculated result of the chemical reactivity parameters further revealed that 6H-borolo[3,4-b]pyrazine containing dyes have lower resistance to charge transfer and greater ability for photon absorption than other dyes. The results of open circuit voltage (Voc), light harvesting efficiency (LHE) and electron injection driving force (ΔGinject) calculated for the dyes showed that all the simulated dyes have good photoelectric conversion efficiency properties but with low dye regeneration (ΔGregen) ability. Notably, high excited state lifetime (τesl) values of 6H-borolo[3,4-b]pyrazine containing dyes would lead to stability of the dyes in the cationic state for a longer time which may result in higher charge transfer efficiency; thus, enhancing electron injection efficiency of the dye-sensitizers for DSSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Data and Materials

No data supporting the findings of this study are available in the supporting information of this article.

References

  1. Mulder FM (2014) Implications of diurnal and seasonal variations in renewable energy generation for large scale energy storage. J Renew Sustain Energy doi 10(1063/1):4874845

    Google Scholar 

  2. Cid JJ, Yum JH, Jang SR, Nazeeruddin MK, Martínez-Ferrero E, Palomares E, Ko J, Gratzel M, Torres T (2007) Molecular cosensitization for efficient panchromatic dye-sensitized solar cells. Angew Chem Int Ed. https://doi.org/10.1002/anie.200703106

    Article  Google Scholar 

  3. Faccio R, Fernandez-Werner L, Pardo H, Mombru WA (2011) Current trends in materials for dye sensitized solar cells. Recent Pat Nanotechnol. https://doi.org/10.2174/187221011794474930

    Article  PubMed  Google Scholar 

  4. O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature. https://doi.org/10.1038/353737a0

    Article  Google Scholar 

  5. Grätzel M (2001) Photoelectrochemical cells. Nature. https://doi.org/10.1038/35104607

    Article  PubMed  Google Scholar 

  6. Ragoussi ME, Ince M, Torres T (2013) Recent advances in phthalocyanine-based sensitizers for dye-sensitized solar cells. Eur J Org Chem. https://doi.org/10.1002/ejoc.201301009

    Article  Google Scholar 

  7. Mishra A, Fischer MKR, Bäuerle P (2009) Metal-free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules. Angew Chem Int Ed Engl. https://doi.org/10.1002/anie.200804709

    Article  PubMed  Google Scholar 

  8. Ning Z, Tian H (2009) Triarylamine: a promising core unit for efficient photovoltaic materials. Chem Commun. https://doi.org/10.1039/B908802D

    Article  Google Scholar 

  9. Zakeeruddin SM, Grätzel M (2009) Solvent-free ionic liquid electrolytes for mesoscopic dye-sensitized solar cells. Adv Funct Mater. https://doi.org/10.1002/adfm.200900390

    Article  Google Scholar 

  10. Chang H, Lo YJ (2010) Pomegranate leaves and mulberry fruit as natural sensitizers for dye-sensitized solar cells. Sol Energy. https://doi.org/10.1016/j.solener.2010.07.009

    Article  Google Scholar 

  11. Fakharuddin A, Jose R, Brown TM, Fabregat-Santiago F, Bisquert J (2014) A perspective on the production of dye-sensitized solar modules. Energy Environ Sci. https://doi.org/10.1039/C4EE01724B

    Article  Google Scholar 

  12. Ahmad S, Guillén E, Kavan L, Grätzel M, Nazeeruddin MK (2013) Metal free sensitizer and catalyst for dye sensitized solar cells Energy Environ. Sci. https://doi.org/10.1039/C3EE41888J

    Article  Google Scholar 

  13. Zdyb A, Krawczyk S (2014) Adsorption and electronic states of morin on TiO2 nanoparticles. Chem Phys. https://doi.org/10.1016/j.chemphys.2014.08.009

    Article  Google Scholar 

  14. Ibrahim OA, Bello IA, Semire B, Bolarinwa HS, Boyo A (2016) Purity-performance relationship of anthocyanidins as sensitizer in dye-sensitized solar cells. Int J Phys Sci. https://doi.org/10.5897/IJPS2016.4468

    Article  Google Scholar 

  15. Yamazaki E, Murayama M, Nishikawa N, Hashimoto N, Shoyama M, Kurita O (2007) Utilization of natural carotenoids as photosensitizers for dye-sensitized solar cells. Sol Energy. https://doi.org/10.1016/j.solener.2006.08.003

    Article  Google Scholar 

  16. Tang Y, Wang Y, Li X, Ågren H, Zhu WH, Xie Y (2015) Porphyrins containing a triphenylamine donor and up to eight alkoxy chains for dye-sensitized solar cells: a high efficiency of 10.9%. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.5b10624

  17. Kakiage K, Aoyama Y, Yano T, Oya K, Fujisawa J (2015) Hanaya M (2015) Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem Commun. https://doi.org/10.1039/C5CC06759F

    Article  Google Scholar 

  18. Liu Y, Xiang N, Feng X, Shen P, Zhou W, Weng C, Zhao B, Tan S (2009) Thiophene-linked porphyrin derivatives for dye-sensitized solar cells. Chem Commun. https://doi.org/10.1039/B821985K

    Article  Google Scholar 

  19. Venkateswararao A, Tyagi P, Thomas KR, Chen PW, Ho KC (2014) Organic dyes containing indolo[2,3-b]quinoxaline as a donor: synthesis, optical and photovoltaic properties. Tetrahedron. https://doi.org/10.1016/j.tet.2014.04.009

    Article  Google Scholar 

  20. Afolabi SO, Semire B, Akiode OK, Afolabi TA, Adebayo GA, Idowu MA (2020) Design and theoretical study of phenothiazine-based low bandgap dye derivatives as sensitizers in molecular photovoltaics. Opt Quantum Electron. https://doi.org/10.1007/s11082-020-02600-5

    Article  Google Scholar 

  21. Yoosuf M, Pradhan SC, Soman S, Gopidas KR (2019) Triple bond rigidified anthracene-triphenylamine sensitizers for dye-sensitized solar cells. Sol Energy. https://doi.org/10.1016/j.solener.2019.05.051

    Article  Google Scholar 

  22. Salimi Beni AR, Karami M, Hosseinzadeh B, Ghahary R (2018) New organic dyes with diphenylamine core for dye-sensitized solar cells. J Mater Sci. https://doi.org/10.1007/s10854-018-8612-4

    Article  Google Scholar 

  23. Ferdowsi P, Saygili Y, Jazaeri F, Edvinsson T, Mokhtari J, Zakeeruddin SM, Liu Y, Gratzel M, Hagfeldt A (2019) Molecular engineering of simple metal-free organic dyes derived from triphenylamine for dye-sensitized solar cell applications. Chemsuschem. https://doi.org/10.1002/cssc.201902245

    Article  PubMed  Google Scholar 

  24. Azaid A, Abram T, Kacimi R, Sbai A, Lakhlifi T, Bouachrine M (2021) Organic materials based with D– π –A structure based on thiophene and anthracene for application in dye-sensitized solar cells. Mater Today Proc. https://doi.org/10.1016/j.matpr.2021.01.119

    Article  Google Scholar 

  25. Numata Y, Islam A, Chen H, Han L (2012) Aggregation-free branch-type organic dye with a twisted molecular architecture for dye-sensitized solar cells. Energy Environ Sci. https://doi.org/10.1039/C2EE22506A

    Article  Google Scholar 

  26. Boschloo G (2019) Improving the performance of dye-sensitized solar cells. Front Chem. https://doi.org/10.3389/fchem.2019.00077

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ponce-Vargas M, Azarias C, Jacquemin D, Le Guennic B (2017) Combined TD-DFT-SOS-CIS(D) Study of BOPHY Derivatives with Potential Application in Biosensing. J Phys Chem B. https://doi.org/10.1021/acs.jpcb.7b09698

    Article  PubMed  Google Scholar 

  28. Ponce-Vargas M, Štefane B, Zaborova E, Fages F, D’Aléo A, Jacquemin D, Le Guennic B (2018) Searching for new borondifluoride β -diketonate complexes with enhanced absorption/emission properties using ab initio tools. Dyes Pigm. https://doi.org/10.1016/j.dyepig.2018.03.022

    Article  Google Scholar 

  29. Afolabi SO, Semire B, Idowu MA (2021) Electronic and optical properties’ tuning of phenoxazine-based D-A2-π-A1 organic dyes for dye-sensitized solar cells. DFT/TDDFT investigations. Heliyon. https://doi.org/10.1016/j.heliyon.2021.e06827

  30. Buene AF, Boholm N, Hagfeldt A, Hoff B (2019) Effect of furan π-spacer and triethylene oxide methyl ether substituents on performance of phenothiazine sensitizers in dye-sensitized solar cells. New J Chem. https://doi.org/10.1039/C9NJ01720H

    Article  Google Scholar 

  31. Ouared I, Rekis M, Trari M (2021) Phenothiazine based organic dyes for dye sensitized solar cells: A theoretical study on the role of π-spacer. Dyes Pigm. https://doi.org/10.1016/j.dyepig.2021.109330

    Article  Google Scholar 

  32. Semire B, Oyebamiji AK, Odunola OA (2016) Tailoring of energy levels in (2Z)-2-cyano-2-[2-[(E)-2-[2-[(E)-2-(p-tolyl)vinyl]thieno[3,2-b]thiophen-5-yl]vinyl]pyran-4-ylidene]acetic acid derivatives via conjugate bridge and fluorination of acceptor units for effective D–π–A dye-sensitized solar cells: DFT–TDDFT approach. Res Chem Intermed. https://doi.org/10.1007/s11164-016-2735-0

    Article  Google Scholar 

  33. Hailu YM, Pham-Ho MP, Nguyen MT, Jiang JC (2020) Silole and selenophene-based D-π-A dyes in dye-sensitized solar cells: Insights from optoelectronic and regeneration properties. Dyes Pigm. https://doi.org/10.1016/j.dyepig.2020.108243

    Article  Google Scholar 

  34. Baktash A, Khoshnevisan B, Sasani A, Mirabbaszadeh K (2016) Effects of carboxylic acid and phosphonic acid anchoring groups on the efficiency of dye sensitized solar cells: A computational study. Org Electron. https://doi.org/10.1016/j.orgel.2016.03.013

    Article  Google Scholar 

  35. Zhang X, Gou F, Shi J, Gao H, Zhu Z, Jing H (2016) Molecular Engineering of New Phenothiazine-based D-A-π-A Dyes for Dye-Sensitized Solar Cells. RSC Adv. https://doi.org/10.1039/C6RA20769C

    Article  PubMed  Google Scholar 

  36. Afolabi SO, Semire B, Akiode OK, Idowu MA (2022) Quantum study on the optoelectronic properties and chemical reactivity of phenoxazine-based organic photosensitizer for solar cell purposes. Theor Chem Acc. https://doi.org/10.1007/s00214-022-02882-w

    Article  Google Scholar 

  37. Zhang L, Cole JM, Waddell PG, Low KS, Liu X (2013) Relating Electron Donor and Carboxylic Acid Anchoring Substitution Effects in Azo Dyes to Dye-Sensitized Solar Cell Performance. ACS Sustain Chem Eng. https://doi.org/10.1021/sc400183t

    Article  Google Scholar 

  38. Tripathi A, Kumar V, Chetti P (2022) Impact of internal (donor/acceptor) moieties and π-spacer in triphenylamine-based dyes for DSSCs. J Photochem Photobiol A. https://doi.org/10.1016/j.jphotochem.2021.113738

    Article  Google Scholar 

  39. Jiang S, Chen Y, Li Y, Han L (2019) Novel D-D-π-A indoline-linked coumarin sensitizers for dye-sensitized solar cells. J Photochem Photobiol A. https://doi.org/10.1016/j.jphotochem.2019.112031

    Article  Google Scholar 

  40. Naresh M, Srivishnu KS, Krishna YR, Mrinalini M, Prasanthkumar S (2021) Light stimulated donor-acceptor forms charge transfer complex in chlorinated solvents. J Chem Sci. https://doi.org/10.1007/s12039-021-01918-1

    Article  Google Scholar 

  41. Arrechea PL, Knudsen KB, Mullinax JW, Haskins JB, Bauschlicher CW, Lawson JW, McCloskey BD (2020) Suppression of Parasitic Chemistry in Li-O2 Batteries Incorporating Thianthrene-based Proposed Redox Mediators. ACS Appl Energy Mater. https://doi.org/10.1021/acsaem.0c01328

    Article  Google Scholar 

  42. Ko S, Choi H, Kang MS, Hwang H, Ji H, Kim J, Ko J, Kang Y (2010) Silole-spaced triarylamine derivatives as highly efficient organic sensitizers in dye-sensitized solar cells (DSSCs). J Mater Chem. https://doi.org/10.1039/B926163J

    Article  Google Scholar 

  43. Kirenga P, Mkoma SL, Mlowe S, Msambwa Y, Kiruri LW, Jacob FR, Mgaya JE, Kinunda GA, Deogratias G (2022) Influence of heteroatoms on the optoelectronic properties of triphenylamine-based dyes for DSSCs application: A computational approach. Comput Theor Chem. https://doi.org/10.1016/j.comptc.2022.113644

    Article  Google Scholar 

  44. Delgado-Montiel T, Soto-Rojo R, Baldenebro-López J, Glossman-Mitnik D (2019) Theoretical Study of the Effect of Different π Bridges Including an Azomethine Group in Triphenylamine-Based Dye for Dye-Sensitized Solar Cells. Molecules. https://doi.org/10.3390/molecules24213897

    Article  PubMed  PubMed Central  Google Scholar 

  45. Fan W, Chang YZ, Zhao JL, Xu ZN, Tan DZ, Chen Y (2018) Theoretical Study of Fused Thiophene Modified Anthracene-Based Organic Dyes for Dye-Sensitized Solar Cells Applications. New J Chem. https://doi.org/10.1039/C8NJ03592J

    Article  Google Scholar 

  46. Adnan M, Mehboob MY, Hussain R, Irshad Z (2021) In silico designing of efficient C-shape non-fullerene acceptor molecules having quinoid structure with remarkable photovoltaic properties for high-performance organic solar cells. Optik. https://doi.org/10.1016/j.ijleo.2021.166839

    Article  Google Scholar 

  47. Raftani M, Abram T, Bennani MN, Bouachrine M (2020) Theoretical study of new conjugated compounds with a low bandgap for bulk heterojunction solar cells: DFT and TD-DFT study. Results Chem. https://doi.org/10.1016/j.rechem.2020.100040

    Article  Google Scholar 

  48. Souilah M, Hachi M, Fitri A, Benjelloun AT, El Khattabi S, Benzakour M, Mcharfi M, Zgou H (2020) Coumarin-based D–π–A dyes for efficient DSSCs: DFT and TD-DFT study of the π-spacers influence on photovoltaic properties. Res Chem Intermed. https://doi.org/10.1007/s11164-020-04302-9

    Article  Google Scholar 

  49. Mohajeri A, Omidvar A, Setoodeh H (2018) Fine structural tuning of thieno[3,2-b]pyrrole donor for designing banana-shaped semiconductors relevant to organic field effect transistors. J Chem Inf Model. https://doi.org/10.1021/acs.jcim.8b00738

    Article  Google Scholar 

  50. Semire B, Oyebamiji A, Odunola OA (2015) Design of (2Z)-2-cyano-2-[2-[(E)-2-[5-[(E)-2-(4-dimethylaminophenyl)vinyl]-2-thienyl]vinyl]pyran-4-ylidene]acetic acid derivatives as D-π-A dye sensitizers in molecular photovoltaics: a density functional theory approach. Res Chem Intermed. https://doi.org/10.1007/s11164-015-2303-z

    Article  Google Scholar 

  51. Spartan’14 Wavefunction, Inc. Irvine, CA

  52. Liu H, Liu L, Fu Y, Liu E, Xue B (2019) Theoretical design of D-π-A-A sensitizers with narrow band gap and broad spectral response based on BODIPY for dye-sensitized solar cells (DSSCs). J Chem Inf Model. https://doi.org/10.1021/acs.jcim.9b00187

    Article  PubMed  PubMed Central  Google Scholar 

  53. Rashid MAM, Hayati D, Kwak K, Hong J (2020) Theoretical Investigation of Azobenzene-Based Photochromic Dyes for Dye-Sensitized Solar Cells. Nanomaterials. https://doi.org/10.3390/nano10050914

    Article  PubMed  PubMed Central  Google Scholar 

  54. Sun C, Li Y, Song P, Ma F (2016) An Experimental and Theoretical Investigation of the Electronic Structures and Photoelectrical Properties of Ethyl Red and Carminic Acid for DSSC Application. Materials. https://doi.org/10.3390/ma9100813

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ninis O, Kacimi R, Bouaamlat H, Abarkan M, Bouachrine M (2017) Theoretical studies of photovoltaic properties for design of new Azo-Pyrrole photo-sensitizer materials as dyes in solar cells. J Mater Environ Sci 8(7):2572–2578

    CAS  Google Scholar 

  56. Preat J, Michaux C, Jacquemin D, Perpète EA (2009) Enhanced Efficiency of Organic Dye-Sensitized Solar Cells: Triphenylamine Derivatives. J Phys Chem C. https://doi.org/10.1021/jp904946a

    Article  Google Scholar 

  57. Jafari CZ, Najafi CA (2017) Theoretical study on the bridge comparison of TiO2 nanoparticle sensitizers based on phenoxazine in dye-sensitized solar cells. Theor Chem Acc. https://doi.org/10.1007/s00214-017-2063-5

    Article  Google Scholar 

  58. Fitri A, Benjelloun AT, Benzakour M, Mcharfi M, Hamidi M, Bouachrine M (2014) Theoretical investigation of new thiazolothiazole-based D-π-A organic dyes for efficient dye-sensitized solar cell. Spectrochim Acta. https://doi.org/10.1016/j.saa.2014.01.052

    Article  Google Scholar 

  59. Daeneke T, Mozer AJ, Uemura Y, Makuta S, Fekete M, Tachibana Y, Koumura N, Bach U, Spiccia L (2012) Dye Regeneration Kinetics in Dye-Sensitized Solar Cells. J Am Chem Soc. https://doi.org/10.1021/ja3054578

    Article  PubMed  Google Scholar 

  60. Li M, Kou L, Diao L, Zhang Q, Li Z, Wu Q, Lu W, Pan D, Wei Z (2015) Theoretical Study of WS-9-Based Organic Sensitizers for Unusual Vis/NIR Absorption and Highly Efficient Dye-Sensitized Solar Cells. J Phys Chem C. https://doi.org/10.1021/acs.jpcc.5b03667

    Article  Google Scholar 

  61. Shalabi AS, El Mahdy AM, Taha HO, Soliman KA (2015) The effects of macrocycle and anchoring group replacements on the performance of porphyrin based sensitizer: DFT and TD-DFT study. J Phys Chem Solids. https://doi.org/10.1016/j.jpcs.2014.08.002

    Article  Google Scholar 

  62. Vuai SA, Khalfan MS, Babu NS (2021) DFT and TD-DFT studies for optoelectronic properties of coumarin based donor-π-acceptor (D-π-A) dyes: applications in dye-sensitized solar cells (DSSCS). Heliyon. https://doi.org/10.1016/j.heliyon.2021.e08339

    Article  PubMed  PubMed Central  Google Scholar 

  63. Deogratias G, Seriani N, Pogrebnaya T, Pogrebnoi A (2019) Tuning optoelectronic properties of triphenylamine based dyes through variation of pi-conjugated units and anchoring groups: A DFT/TD-DFT investigation. J Mol Graph. https://doi.org/10.1016/j.jmgm.2019.107480

    Article  Google Scholar 

  64. Li M, Kou L, Diao L, Zhang Q, Li Z, Wu Q, Lu W, Pan D (2015) Theoretical Study of Acene-Bridged Dyes for Dye-Sensitized Solar Cells. J Phys Chem. https://doi.org/10.1021/acs.jpca.5b00798

    Article  Google Scholar 

  65. Semire B, Oyebamiji AK, Odunola OA (2020) Electronic Properties’ Modulation of D-A-A via Fluorination of 2-Cyano-2-pyran-4-ylidene-Acetic Acid Acceptor Unit for Efficient DSSCs: DFT-TDDFT Approach. Sci Afr. https://doi.org/10.1016/j.sciaf.2020.e00287

    Article  Google Scholar 

  66. Wazzan NA (2019) A DFT/TDDFT investigation on the efficiency of novel dyes with ortho-fluorophenyl units (A1) and incorporating benzotriazole/benzothiadiazole/phthalimide units (A2) as organic photosensitizers with D-A2–π–A1 configuration for solar cell applications. J Comput Electron. https://doi.org/10.1007/s10825-019-01308-4

    Article  Google Scholar 

  67. Kumar MD, Rajesh P, Dharsini RP, Inban ME (2019) Molecular Geometry, NLO, MEP, HOMO-LUMO and Mulliken Charges of Substituted Piperidine Phenyl Hydrazines by Using Density Functional Theory. Asian J Chem. https://doi.org/10.14233/ajchem.2020.22444

  68. Theivarasua C, Murugesan R (2016) Natural bond orbital (NBO) population analysis of an energetic molecule 1-phenyl-2-nitroguanidine. Int J Chem Sci 14(4):2029–2050

    Google Scholar 

  69. Png ZM, Soo XYD, Chua MH, Ong PJ, Suwardi A, Tan CKI, Xu J, Zhu Q (2022) Strategies to reduce the flammability of organic phase change. Materials. https://doi.org/10.1016/j.solener.2021.11.057

    Article  Google Scholar 

  70. Islam A, Sugihara H, Arakawa H (2003) Molecular design of ruthenium(II) polypyridyl photosensitizers for efficient nanocrystalline TiO2 solar cells. J Photochem Photobiol A. https://doi.org/10.1016/S1010-6030(03)00027-3

    Article  Google Scholar 

  71. De Angelis F, Fantacci S, Selloni A (2008) Alignment of the dye’s molecular levels with the TiO2 band edges in dye-sensitized solar cells: a DFT–TDDFT study. Nanotechnology. https://doi.org/10.1088/0957-4484/19/42/424002

    Article  PubMed  Google Scholar 

  72. Suresh T, Chitumalla RK, Hai NT, Jang J, Lee TJ, Kim JH (2016) Impact of neutral and anion anchoring groups on the photovoltaic performance of triphenylamine sensitizers for dye-sensitized solar cells. RSC Adv. https://doi.org/10.1039/C6RA00636A

    Article  Google Scholar 

  73. Kumar V, Koudjina S, Verma P, Chetti P (2023) Optoelectronic design and charge transport properties of Benzodifuran (BDF) isomers for organic electronic devices: DFT/TD-DFT insights. Spectrochim Acta A Mol Biomol Spectrosc. https://doi.org/10.1016/j.saa.2022.122266

    Article  PubMed  Google Scholar 

  74. Delgado-Montiel T, Baldenebro-López J, Soto-Rojo R, Glossman-Mitnik D (2020) Theoretical Study of the Effect of π-Bridge on Optical and Electronic Properties of Carbazole-Based Sensitizers for DSSCs. Molecules. https://doi.org/10.3390/molecules25163670

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research did receive no financial support/grant/fund from any agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

BS, AKO and OAO: conceived, designed, provided material for the experiments and interpreted the data. SOA, DFL, MDA, ADO, OMO, and IOA: performed the experiments; analyzed and interpreted the data; wrote the manuscript.

Corresponding authors

Correspondence to Banjo Semire, Samson Olusegun Afolabi or Olusegun Ayobami Odunola.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical Approval

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semire, B., Afolabi, S.O., Latona, D.F. et al. Quantum Chemical Elucidation on the Optoelectronic Properties of N2-(4-Aminophenyl)Pyridine-2,5-Diamine Based Dyes for Solar Cells Utilization. Chemistry Africa 6, 2649–2663 (2023). https://doi.org/10.1007/s42250-023-00674-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-023-00674-8

Keywords

Navigation