Skip to main content
Log in

The roles of charge transfer and polarization in non-covalent interactions: a perspective from ab initio valence bond methods

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

A Correction to this article was published on 24 September 2022

This article has been updated

Abstract

Noncovalent interactions are ubiquitous and have been well recognized in chemistry, biology and material science. Yet, there are still recurring controversies over their natures, due to the wide range of noncovalent interaction terms. In this Essay, we employed the Valence Bond (VB) methods to address two types of interactions which recently have drawn intensive attention, i.e., the halogen bonding and the CH‧‧‧HC dihydrogen bonding. The VB methods have the advantage of interpreting molecular structures and properties in the term of electron-localized Lewis (resonance) states (structures), which thereby shed specific light on the alteration of the bonding patterns. Due to the electron localization nature of Lewis states, it is possible to define individually and measure both polarization and charge transfer effects which have different physical origins. We demonstrated that both the ab initio VB method and the block-localized wavefunction (BLW) method can provide consistent pictures for halogen bonding systems, where strong Lewis bases NH3, H2O and NMe3 partake as the halogen bond acceptors, and the halogen bond donors include dihalogen molecules and XNO2 (X = Cl, Br, I). Based on the structural, spectral, and energetic changes, we confirm the remarkable roles of charge transfer in these halogen bonding complexes. Although the weak C-H∙∙∙H-C interactions in alkane dimers and graphane sheets are thought to involve dispersion only, we show that this term embeds delicate yet important charge transfer, bond reorganization and polarization interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Scheme 2.
Scheme 3.
Fig. 1
Fig. 2

copyright 2019

Fig. 3

copyright 2014

Fig. 4
Scheme 4.

copyright 2013

Fig. 5

Adapted from Fig. 6 in Ref. [75], with ACS permission. Copyright 2013

Scheme 5.

Copyright 2013

Scheme 6.
Fig. 6

Copyright 2015

Similar content being viewed by others

Data availability

Available upon request.

Code availability

Not applicable.

Change history

References

  1. Muller-Dethlefs K, Hobza P (2000) Noncovalent interactions: a challenge for experiment and theory. Chem Rev 100(1):143–168

    Article  CAS  PubMed  Google Scholar 

  2. Mazik M (2009) Molecular recognition of carbohydrates by acyclic receptors employing noncovalent interactions. Chem Soc Rev 38(4):935–956

    Article  CAS  PubMed  Google Scholar 

  3. Rybtchinski B (2011) Adaptive supramolecular nanomaterials based on strong noncovalent interactions. ACS Nano 5(9):6791–6818

    Article  CAS  PubMed  Google Scholar 

  4. Zhou P, Huang J, Tian F (2012) Specific noncovalent interactions at protein-ligand interface: implications for rational drug design. Curr Med Chem 19(2):226–238

    Article  CAS  PubMed  Google Scholar 

  5. Liu K, Kang Y, Wang Z, Zhang X (2013) 25th anniversary article: reversible and adaptive functional supramolecular materials: “noncovalent interaction” matters. Adv Mat 25(39):5530–5548

    Article  CAS  Google Scholar 

  6. Ding J, Chen L, Xiao C, Chen L, Zhuang X, Chen X (2014) Noncovalent interaction-assisted polymeric micelles for controlled drug delivery. Chem Commun (Camb) 50(77):11274–11290

    Article  CAS  Google Scholar 

  7. Fink K, Boratynski J (2014) Noncovalent cation-pi interactions–their role in nature (Oddzialywania niekowalencyjne kation-pi-ich rola w przyrodzie). Postepy Hig Med Dosw(Online) 68:1276–1286

    Article  Google Scholar 

  8. Mahadevi AS, Sastry GN (2016) Cooperativity in Noncovalent Interactions. Chem Rev 116(5):2775–2825

    Article  CAS  PubMed  Google Scholar 

  9. Portugal J, Barcelo F (2016) Noncovalent Binding to DNA: Still a Target in Developing Anticancer Agents. Curr Med Chem 23(36):4108–4134

    Article  CAS  PubMed  Google Scholar 

  10. Wheeler SE, Seguin TJ, Guan Y, Doney AC (2016) Noncovalent Interactions in Organocatalysis and the Prospect of Computational Catalyst Design. Acc Chem Res 49(5):1061–1069

    Article  CAS  PubMed  Google Scholar 

  11. Molina P, Zapata F, Caballero A (2017) Anion Recognition Strategies Based on Combined Noncovalent Interactions. Chem Rev 117(15):9907–9972

    Article  CAS  PubMed  Google Scholar 

  12. Gleiter R, Haberhauer G, Werz DB, Rominger F, Bleiholder C (2018) From Noncovalent Chalcogen-Chalcogen Interactions to Supramolecular Aggregates: Experiments and Calculations. Chem Rev 118(4):2010–2041

    Article  CAS  PubMed  Google Scholar 

  13. Hirota S, Lin Y-W (2018) Design of artificial metalloproteins/metalloenzymes by tuning noncovalent interactions. J Biol Inorg Chem : JBIC : Publ Soc Biol Inorg Chem 23(1):7–25

    Article  CAS  Google Scholar 

  14. Pan Y, Gao S, Sun F, Yang H, Cao P-F (2019) Polymer Binders Constructed through Dynamic Noncovalent Bonds for High-Capacity Silicon-Based Anodes. Chemistry (Weinheim an der Bergstrasse, Germany) 25(47):10976–10994

    CAS  Google Scholar 

  15. Shy AN, Kim BJ, Xu B (2019) Enzymatic Noncovalent Synthesis of Supramolecular Soft Matter for Biomedical Applications. Matter 1(5):1127–1147

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fanourakis A, Docherty PJ, Chuentragool P, Phipps RJ (2020) Recent Developments in Enantioselective Transition Metal Catalysis Featuring Attractive Noncovalent Interactions between Ligand and Substrate. ACS Catal 10(18):10672–10714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hobza P (2012) Calculations on noncovalent interactions and databases of benchmark interaction energies. Acc Chem Res 45(4):663–672

    Article  CAS  PubMed  Google Scholar 

  18. Stone AJ (2013) The Theory of Intermolecular Forces. Oxford University Press, United Kingdom

    Book  Google Scholar 

  19. Arunan E (2013) Hydrogen Bond Seen, Halogen Bond Defined and Carbon Bond Proposed: Intermolecular Bonding, a Field that is Maturing. Curr Sci 105(7):892–894

    Google Scholar 

  20. Alvarez S (2013) A Cartography of van der Waals Territories. Dalton Trans 42:8617–8636

    Article  CAS  PubMed  Google Scholar 

  21. Scheiner S (2013) The pnicogen bond: its relation to hydrogen, halogen, and other noncovalent bonds. Acc Chem Res 46(2):280–288

    Article  CAS  PubMed  Google Scholar 

  22. Cooper D (ed) (2002) Valence Bond Theory, vol 10. Elsevier, Amsterdam

    Google Scholar 

  23. Gallup GA (2002) Valence Bond Methods: Theory and Applications. Cambridge University Press, New York

    Book  Google Scholar 

  24. Shaik SS, Hiberty PC (2007) A Chemist’s Guide to Valence Bond Theory. John Wiley & Sons, Hoboken, New Jersey

    Book  Google Scholar 

  25. Wu W, Su P, Shaik S, Hiberty PC (2011) Classical Valence Bond Approach by Modern Methods. Chem Rev 111(11):7557–7593

    Article  CAS  PubMed  Google Scholar 

  26. Mo Y (2014) Chapter 6. The Block-Localized Wavefunction (BLW) Perspective of Chemical Bonding. In: Frenking G, Shaik S (eds) The Chemical Bond: Fundamental Aspects of Chemical Bonding. Wiley-VCH, pp 199–232

  27. Mo Y, Peyerimhoff SD (1998) Theoretical analysis of electronic delocalization. J Chem Phys 109(5):1687–1697

    Article  CAS  Google Scholar 

  28. Mo Y, Song L, Lin Y (2007) Block-localized wavefunction (BLW) method at the density functional theory (DFT) level. J Phys Chem A 111(34):8291–8301

    Article  CAS  PubMed  Google Scholar 

  29. Guthrie F (1863) XXVIII.-On the Iodide of Iodammonium. J Chem Soc 16:239–244

    Article  Google Scholar 

  30. Priimagi A, Cavallo G, Metrangolo P, Resnati G (2013) The Halogen Bond in the Design of Functional Supramolecular Materials: Recent Advances. Acc Chem Res 46(11):2686–2695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Metrangolo P, Resnati G, Pilati T, Biella S (2008) Halogen Bonding in Crystal Engineering. In: Metrangolo P, Resnati G (eds) Halogen Bonding: Fundamentals and Applications, vol 126. Springer Berlin Heidelberg, pp 105–136

  32. Sacchi M, Brewer AY, Jenkins SJ, Parker JE, Friscic T, Clarke SM (2013) Combined Diffraction and Density Functional Theory Calculations of Halogen-Bonded Cocrystal Monolayers. Langmuir 29(48):14903–14911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gonzalez L, Gimeno N, Tejedor RM, Polo V, Ros MB, Uriel S, Serrano JL (2013) Halogen-Bonding Complexes Based on Bis(iodoethynyl)benzene Units: A New Versatile Route to Supramolecular Materials. Chem Mat 25(22):4503–4510

    Article  CAS  Google Scholar 

  34. Mukherjee A, Tothadi S, Desiraju GR (2014) Halogen Bonds in Crystal Engineering: Like Hydrogen Bonds yet Different. Acc Chem Res 47(8):2514–2524

    Article  CAS  PubMed  Google Scholar 

  35. Benz S, Poblador-Bahamonde AI, Low-Ders N, Matile S (2018) Catalysis with Pnictogen, Chalcogen, and Halogen Bonds. Angew Chem, Int Ed 57(19):5408–5412

    Article  CAS  Google Scholar 

  36. Sirimulla S, Bailey JB, Vegesna R, Narayan M (2013) Halogen Interactions in Protein-Ligand Complexes: Implications of Halogen Bonding for Rational Drug Design. J Chem Info Model 53(11):2781–2791

    Article  CAS  Google Scholar 

  37. Auffinger P, Hays FA, Westhof E, Ho PS (2004) Halogen Bonds in Biological Molecules. Proc Nat Acad Sci 101(48):16789–16794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hardegger LA, Kuhn B, Spinnler B, Anselm L, Ecabert R, Stihle M, Gsell B, Thoma R, Diez J, Benz J, Plancher JM, Hartmann G, Banner DW, Haap W, Diederich F (2011) Systematic Investigation of Halogen Bonding in Protein-Ligand Interactions. Angew Chem Int Ed 50(1):314–318

    Article  CAS  Google Scholar 

  39. Riley KE, Murray JS, Fanfrlik J, Rezac J, Sola RJ, Concha MC, Ramos FM, Politzer P (2011) Halogen Bond Tunability I: The Effects of Aromatic Fluorine Substitution on the Strengths of Halogen-Bonding Interactions Involving Chlorine, Bromine, and Iodine. J Mol Model 17(12):3309–3318

    Article  CAS  PubMed  Google Scholar 

  40. Riley KE, Murray JS, Fanfrlik J, Rezac J, Sola RJ, Concha MC, Ramos FM, Politzer P (2013) Halogen Bond Tunability II: The Varying Roles of Electrostatic and Dispersion Contributions to Attraction in Halogen Bonds. J Mol Model 19(11):4651–4659

    Article  CAS  PubMed  Google Scholar 

  41. Zhu Z, Xu Z, Zhu W (2020) Interaction Nature and Computational Methods for Halogen Bonding: A Perspective. J Chem Inf Model 60(6):2683–2696

    Article  CAS  PubMed  Google Scholar 

  42. Lu Y, Shi T, Wang Y, Yang H, Yan X, Luo X, Jiang H, Zhu W (2009) Halogen Bonding - A Novel Interaction for Rational Drug Design? J Med Chem 52(9):2854–2862

    Article  CAS  PubMed  Google Scholar 

  43. Mulliken RS (1950) Structures of Complexes Formed by Halogen Molecules with Aromatic and with Oxygenated Solvents. J Am Chem Soc 72(1):600–608

    Article  CAS  Google Scholar 

  44. Bent HA (1968) Structural chemistry of donor-acceptor interactions. Chem Rev 68(5):587–648

    Article  CAS  Google Scholar 

  45. Legon AC (1999) Prereactive Complexes of Dihalogens XY with Lewis Bases B in the Gas Phase: A Systematic Case for the Halogen Analogue B∙∙∙XY of the Hydrogen Bond B∙∙∙HX. Angew Chem Int Ed 38(18):2686–2714

    Article  CAS  Google Scholar 

  46. Clark T, Hennemann M, Murray JS, Politzer P (2007) Halogen Bonding: The σ-Hole. J Mol Model 13(2):293–296

    Article  Google Scholar 

  47. Clark T (2013) σ-Holes. WIREs Comput Mol Sci 3(1):13–20

    Article  CAS  Google Scholar 

  48. Politzer P, Murray JS, Clark T (2010) Halogen Bonding: An Electrostatically-Driven Highly Directional Noncovalent Interaction. Phys Chem Chem Phys 12(28):7748–7757

    Article  CAS  PubMed  Google Scholar 

  49. Politzer P, Murray JS (2013) Halogen Bonding: An Interim Discussion. ChemPhysChem 14:278–294

    Article  CAS  PubMed  Google Scholar 

  50. Politzer P, Murray JS, Clark T (2013) Halogen Bonding and Other σ-Hole Interactions: A Perspective. Phys Chem Chem Phys 15(27):11178–11189

    Article  CAS  PubMed  Google Scholar 

  51. Politzer P, Murray JS (2020) Electrostatics and Polarization in σ and π -Hole Noncovalent Interactions: An Overview. Chemphyschem : Eur J Chem Physics Phys Chem 21(7):579–588

    Article  CAS  Google Scholar 

  52. Brinck T, Murray JS, Politzer P (1992) Surface Electrostatic Potentials of Halogenated Methanes as Indicators of Directional Intermolecular Interactions. Int J Quantum Chem 44(S19):57–64

    Article  Google Scholar 

  53. Wang C, Guan L, Danovich D, Shaik S, Mo Y (2016) The Origins of the Directionality of Non-Covalent Intermolecular Interactions. J Comput Chem 37(1):34–45

    Article  CAS  PubMed  Google Scholar 

  54. Shields ZP, Murray JS, Politzer P (2010) Directional Tendencies of Halogen and Hydrogen Bonds. Int J Quantum Chem 110(15):2823–2832

    Article  CAS  Google Scholar 

  55. Kolář MH, Hobza P (2016) Computer Modeling of Halogen Bonds and Other σ-Hole Interactions. Chem Rev 116(9):5155–5187

    Article  PubMed  Google Scholar 

  56. Riley KE, Murray JS, Politzer P, Concha MC, Hobza P (2009) Br···O Complexes as Probes of Factors Affecting Halogen Bonding: Interactions of Bromobenzenes and Bromopyrimidines with Acetone. J Chem Theory Comput 5(1):155–163

    Article  CAS  PubMed  Google Scholar 

  57. Clark T, Hesselmann A (2018) The Coulombic σ-Hole Model Describes Bonding in CX3IY− Complexes Completely. Phys Chem Chem Phys 20(35):22849–22855

    Article  CAS  PubMed  Google Scholar 

  58. Murray JS, Politzer P (2017) Molecular Electrostatic Potentials and Noncovalent Interactions. Wiley Interdiscip Rev: Comput Mol Sci 7(6):1326

    Google Scholar 

  59. Brinck T, Borrfors AN (2019) Electrostatics and polarization determine the strength of the halogen bond: a red card for charge transfer. J Mol Model 25(5):125

    Article  PubMed  Google Scholar 

  60. Robinson SW, Mustoe CL, White NG, Brown A, Thompson AL, Kennepohl P, Beer PD (2015) Evidence for Halogen Bond Covalency in Acyclic and Interlocked Halogen-Bonding Receptor Anion Recognition. J Am Chem Soc 137(1):499–507

    Article  CAS  PubMed  Google Scholar 

  61. Legon AC (2010) The halogen bond: an interim perspective. Phys Chem Chem Phys 12(28):7736–7747

    Article  CAS  PubMed  Google Scholar 

  62. Řezáč J, de la Lande A (2017) On the role of charge transfer in halogen bonding. Phys Chem Chem Phys 19(1):791–803

    Article  Google Scholar 

  63. Rosokha SV, Stern CL, Ritzert JT (2013) Experimental and Computational Probes of the Nature of Halogen Bonding: Complexes of Bromine-Containing Molecules with Bromide Anions. Chem Eur J 19(27):8774–8788

    Article  CAS  PubMed  Google Scholar 

  64. Wang C, Danovich D, Mo Y, Shaik S (2014) On the Nature of the Halogen Bond. J Chem Theory Comput 10(9):3726–3737

    Article  CAS  PubMed  Google Scholar 

  65. Otero-De-La-Roza A, Johnson ER, DiLabio GA (2014) Halogen Bonding from Dispersion-Corrected Density-Functional Theory: The Role of Delocalization Error. J Chem Theory Comput 10(12):5436–5447

    Article  CAS  PubMed  Google Scholar 

  66. Wang C, Danovich D, Shaik S, Wu W, Mo Y (2019) Attraction between Electrophilic Caps: A Counterintuitive Case of Non-Covalent Interactions. J Comput Chem 40(9):1015–1022

    Article  CAS  PubMed  Google Scholar 

  67. Wang C, Fu Y, Zhang L, Danovich D, Shaik S, Mo Y (2018) Hydrogen- and Halogen-Bonds Between Ions of Like Charges: Are They Anti-Electrostatic in Nature? J Comput Chem 39(9):481–487

    Article  PubMed  Google Scholar 

  68. Huber SM, Jimenez-Izal E, Ugalde JM, Infante I (2012) Unexpected Trends in Halogen-Bond Based Noncovalent Adducts. Chem Comm 48(62):7708–7710

    Article  CAS  PubMed  Google Scholar 

  69. Sarwar MG, Dragisic B, Salsberg LJ, Gouliaras C, Taylor MS (2010) Thermodynamics of Halogen Bonding in Solution: Substituent, Structural, and Solvent Effects. J Am Chem Soc 132(5):1646–1653

    Article  CAS  PubMed  Google Scholar 

  70. Crabtree RH (1998) A New Type of Hydrogen Bond. Science 282(5396):2000–2001

    Article  CAS  Google Scholar 

  71. Custelcean R, Jackson JE (2001) Dihydrogen Bonding: Structures, Energetics, and Dynamics. Chem Rev 101(7):1963–1998

    Article  CAS  PubMed  Google Scholar 

  72. Richardson TB, de Gala S, Crabtree RH, Siegbahn PEM (1995) Unconventional Hydrogen Bonds: Intermolecular B-H···H-N Interactions. J Am Chem Soc 117(51):12875–12876

    Article  CAS  Google Scholar 

  73. Calhorda MJ (2000) Weak hydrogen bonds: theoretical studies. Chem Comm 10:801–809

    Article  Google Scholar 

  74. Braga D, De Leonardis P, Grepioni F, Tedesco E, Calhorda MJ (1998) Structural and theoretical analysis of M-H···H-M and M-H···H-C intermolecular interactions. Inorg Chem 37(13):3337–3348

    Article  CAS  Google Scholar 

  75. Danovich D, Shaik S, Neese F, Echeverria J, Aullon G, Alvarez S (2013) Understanding the Nature of the CH···HC Interactions in Alkanes. J Chem Theor Comput 9(4):1977–1991

    Article  CAS  Google Scholar 

  76. Echeverria J, Aullon G, Danovich D, Shaik S, Alvarez S (2011) Dihydrogen contacts in alkanes are subtle but not faint. Nature Chem 3(4):323–330

    Article  CAS  Google Scholar 

  77. Novoa JJ, Whangbo M-H (1991) Interactions energies associated with short intermolecular contacts of C-H bonds. II: Ab initio computational study of the C-H···H-C interactions in methane dimer. J Chem Phys 94(7):4835–4841

    Article  CAS  Google Scholar 

  78. Tsuzuki S, Honda K, Tadafumi U, Mikami M (2004) Magnitude of interaction between n-alkane chains and its anisotropy: High-level ab initio calculations of n-butane, n-pentane and n-hexane dimers. J Phys Chem A 108(46):10311–10316

    Article  CAS  Google Scholar 

  79. Rossini FD, Pitzer KS, Arnett RL, Braun RM, Pimentel GC (1952) Selected Values of Physical and Thermodynamic Properties of Hydrocarbons and Related Compounds. Carnegie Press, Pittsburgh

    Google Scholar 

  80. Chickos JS, Hanshaw W (2004) Vapor pressures and vaporization enthalpies for the n-alkanes from C31 to C38 at T = 298.15 K by correlation gas chromatography. J Chem Eng Data 49(3):620–630

    Article  CAS  Google Scholar 

  81. Kitaura K, Morokuma K (1976) A New Energy Decomposition Scheme for Molecular Interactions within the Hartree-Fock Approximation. Int J Quantum Chem 10(2):325–340

    Article  CAS  Google Scholar 

  82. Morokuma K (1977) Why Do Molecules Interact? The Origin of Electron Donor-Acceptor Complexes, Hydrogen Bonding and Proton Affinity. Acc Chem Res 10(8):294–300

    Article  CAS  Google Scholar 

  83. Jeziorski B, Moszynski R, Szalewicz K (1994) Perturbation theory approach to intermolecular potential energy surfaces of van der Waals complexes. Chem Rev 94(7):1887–1930

    Article  CAS  Google Scholar 

  84. Szalewicz K, Jeziorski B (1979) Symmetry-adapted double-perturbation analysis of intramolecular correlation effects in weak intermolecular interactions. Mol Phys 38(1):191–208

    Article  CAS  Google Scholar 

  85. Bagus PS, Hermann K, Bauschlicher CW Jr (1984) A New Analysis of Charge Transfer and Polarization for Ligand-Metal Bonding: Model Studies of Carbonylaluminum (Al4CO) and Amminealuminum (Al4NH3). J Chem Phys 80(9):4378–4386

    Article  CAS  Google Scholar 

  86. Ziegler T, Rauk A (1977) On the Calculation of Bonding Energies by the Hartree Fock Slater Method. Theor Chem Acc 46(1):1–10

    Article  CAS  Google Scholar 

  87. Stevens WJ, Fink WH (1987) Frozen Fragment Reduced Variational Space Analysis of Hydrogen Bonding Interactions. Application to the Water Dimer. Chem Phys Lett 139(1):15–22

    Article  CAS  Google Scholar 

  88. Chen W, Gordon MS (1996) Energy Decomposition Analyses for Many-Body Interaction and Applications to Water Complexes. J Phys Chem 100(34):14316–14328

    Article  CAS  Google Scholar 

  89. Glendening ED, Streitwieser A (1994) Natural energy decomposition analysis - An energy partitioning procedure for molecular-interactions with application to weak hydrogen-bonding, strong ionic, and moderate donor-acceptor interactions. J Chem Phys 100(4):2900–2909

    Article  CAS  Google Scholar 

  90. Mo Y, Gao J, Peyerimhoff SD (2000) Energy decomposition analysis of intermolecular interactions using a block-localized wave function approach. J Chem Phys 112(13):5530–5538

    Article  CAS  Google Scholar 

  91. Mo Y, Bao P, Gao J (2011) Energy decomposition analysis based on a block-localized wavefunction and multistate density functional theory. Phys Chem Chem Phys 13(15):6760–6775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Reinhardt P, Piquemal J-P, Savin A (2008) Fragment-Localized Kohn−Sham Orbitals via A Singles Configuration-Interaction Procedure and Application to Local Properties and Intermolecular Energy Decomposition analysis. J Chem Theory Comput 4(12):2020–2029

    Article  CAS  PubMed  Google Scholar 

  93. Su P, Li H (2009) Energy Decomposition Analysis of Covalent Bonds and Intermolecular Interactions. J Chem Phys 131(1):014101

    Article  PubMed  Google Scholar 

  94. Wu Q, Ayers PW, Zhang YK (2009) Density-Based Energy Decomposition Analysis for Intermolecular Interactions with Variationally Determined Intermediate State Energies. J Chem Phys 131(16):164112

    Article  PubMed  Google Scholar 

  95. Mitoraj M, Michalak A, Ziegler T (2009) A Combined Charge and Energy Decomposition Scheme for Bond Analysis. J Chem Theory Comput 5(4):962–975

    Article  CAS  PubMed  Google Scholar 

  96. Khaliullin RZ, Cobar EA, Lochan RC, Bell AT, Head-Gordon M (2007) Unravelling the Origin of Intermolecular Interactions Using Absolutely Localized Molecular Orbitals. J Phys Chem A 111(36):8753–8765

    Article  CAS  PubMed  Google Scholar 

  97. Reed AE, Weinhold F (1985) Natural Localized Molecular Orbitals. J Chem Phys 83(4):1736–1740

    Article  CAS  Google Scholar 

  98. Landis CR, Weinhold F (2014) Chapter 3. The NBO View of Chemical Bonding. In: Frenking G, Shaik S (eds) The Chemical Bond: Fundamental Aspects of Chemical Bonding. Wiley-VCH, pp 91–120

  99. Bader RF (1985) Atoms in Molecules. Acc Chem Res 18(1):9–15

    Article  CAS  Google Scholar 

  100. Matta CF, Boyd RJ (eds) (2007) The Quantum Theory of Atoms in Molecules: From Solid State to DNA and Drug Design. Wiley-VCH, Weinheim

    Google Scholar 

  101. Geerlings P, Chamorro E, Chattaraj PK, De Proft F, Gázquez JL, Liu S, Morell C, Toro-Labbé A, Vela A, Ayers P (2020) Conceptual density functional theory: status, prospects, issues. Theor Chem Acc 139(2):36

    Article  CAS  Google Scholar 

  102. Geerlings P, De Proft F, Langenaeker W (2003) Conceptual Density Functional Theory. Chem Rev 103(5):1793–1874

    Article  CAS  PubMed  Google Scholar 

  103. Zubarev DY, Boldyrev AI (2008) Developing Paradigms of Chemical Bonding: Adaptive Natural Density Partitioning. Phy Chem Chem Phys 10(34):5207–5217

    Article  CAS  Google Scholar 

  104. Brandhorst K, Grunenberg J (2010) Efficient Computation of Compliance Matrices in Redundant Internal Coordinates from Cartesian Hessians for Nonstationary Points. J Chem Phys 132(18):184101–184107

    Article  Google Scholar 

  105. Brandhorst K, Grunenberg J (2008) How Strong Is It? The Interpretation of Force and Compliance Constants as Bond Strength Descriptors. Chem Soc Rev 37(8):1558–1567

    Article  CAS  PubMed  Google Scholar 

  106. Contreras-García J, Yang W, Johnson ER (2011) Analysis of Hydrogen-Bond Interaction Potentials from the Electron Density: Integration of Noncovalent Interaction Regions. J Phys Chem A 115(45):12983–12990

    Article  PubMed  Google Scholar 

  107. Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang W (2010) Revealing Noncovalent Interactions. J Am Chem Soc 132(18):6498–6506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wang C, Danovich D, Shaik S, Mo Y (2017) A Unified Theory for the Blue- and Red-Shifting Phenomena in Hydrogen and Halogen Bonds. J Chem Theory Comput 13(4):1626–1637

    Article  CAS  PubMed  Google Scholar 

  109. van Lenthe JH, Balint-Kurti GG (1983) The valence-bond self-consistent field method (VB–SCF): Theory and test calculations. J Chem Phys 78(9):5699–5713

    Article  Google Scholar 

  110. Hiberty PC, Shaik S (2002) Breathing-orbital valence bond method – a modern valence bond method that includes dynamic correlation. Theor Chem Acc 108(5):255–272

    Article  CAS  Google Scholar 

  111. Hiberty PC, Humbel S, Byrman C, van Lenthe J (1994) 5969 (1994) Compact valence bond functions with breathing orbitals: Application to the bond dissociation energies of F2 and FH. J Chem Phys 101(7):5969–5976

    Article  CAS  Google Scholar 

  112. Goddard WA, Dunning TH, Hunt WJ, Hay PJ (1973) Generalized valence bond description of bonding in low-lying states of molecules. Acc Chem Res 6(11):368–376

    Article  CAS  Google Scholar 

  113. Wang C, Mo Y (2019) Classical Electrostatic Interaction Is the Origin for Blue-Shifting Halogen Bonds. Inorg Chem 58(13):8577–8586

    Article  CAS  PubMed  Google Scholar 

  114. Joy J, Jemmis ED, Vidya K (2015) Negative Hyperconjugation and Red-, Blue- or Zero-Shift in X−Z···Y Complexes. Faraday Discuss 177:33–50

    Article  CAS  PubMed  Google Scholar 

  115. Joy J, Jose A, Jemmis ED (2016) Continuum in the X−Z···Y Weak Bonds: Z= Main Group Elements. J Comput Chem 37(2):270–279

    Article  CAS  PubMed  Google Scholar 

  116. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120(1–3):215–241

    Article  CAS  Google Scholar 

  117. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Eements H-Pu. J Chem Phys 132(15):154104

    Article  PubMed  Google Scholar 

  118. Goerigk L, Grimme S (2011) A Thorough Benchmark of Density Functional Methods for General Main Group Thermochemistry, Kinetics, and Noncovalent Interactions. Phys Chem Chem Phys 13:6670–6688

    Article  CAS  PubMed  Google Scholar 

  119. Grimme S (2006) Semiempirical GGA-type Density Functional Constructed with a Long-Range Dispersion Correction. J Comput Chem 27:1787–1799

    Article  CAS  PubMed  Google Scholar 

  120. Metz B, Stoll H, Dolg M (2000) Small-Core Multiconfiguration-Dirac–Hartree–Fock-Adjusted Pseudopotentials for Post-d Main Group Elements: Application to PbH and PbO. J Chem Phys 113(7):2563

    Article  CAS  Google Scholar 

  121. Peterson KA (2003) Systematically convergent basis sets with relativistic pseudopotentials. I. Correlation consistent basis sets for the post-d group 13–15 elements. J Chem Phys 119(21):11099

    Article  CAS  Google Scholar 

  122. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JJ, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) General Atomic and Molecular Electronic Structure System. J Comput Chem 14(11):1347–1363

    Article  CAS  Google Scholar 

  123. Shaik S (2018) Chapter 1. Bonds and Intermolecular Interactions - The Return of Cohesion to Chemistry. In: Novoa JJ (ed) Intermolecular Interactions in Crystals: Fundamentals of Crystal Engineering. The Royal Society of Chemistry, London, pp 3–68

    Google Scholar 

  124. Grimme S, Antony J, Ehrlich S, Krieg H (2010) DFT-D3 - A dispersion correction for density functionals, Hartree-Fock and semi-empirical quantum chemical methods DFT-D3. J Chem Phys 132:154104

    Article  PubMed  Google Scholar 

  125. Caldeweyher E, Ehlert S, Hansen A, Neugebauer H, Spicher S, Bannwarth C, Grimme S (2019) A generally applicable atomic-charge dependent London dispersion correction. J Chem Phys 150:154122

    Article  PubMed  Google Scholar 

  126. Truhlar DG (2019) Dispersion Forces: Neither Fluctuating Nor Dispersing. J Chem Edu 96(8):1671–1675

    Article  CAS  Google Scholar 

  127. Wang C, Mo Y, Wagner JP, Schreiner PR, Jemmis ED, Danovich D, Shaik S (2015) The Self-Association of Graphane Is Driven by London Dispersion and Enhanced Orbital Interactions. J Chem Theory Comput 11(4):1621–1630

    Article  CAS  PubMed  Google Scholar 

  128. Schreiner RP, Chernish LV, Gunchenko PA, Tikhonchuk EY, Hausman H, Serafim M, Schlecht S, Dahl JEP, Carlson RMK, Fokin AA (2011) Overcoming Lability of Extremely Long Alkane Carbon-Carbon Bonds through Dispersion Forces. Nature Chem 477:308–311

    CAS  Google Scholar 

  129. Grimme S, Schreiner PR (2011) Steric Crowding Can Stabilize a Labile Molecule: Solving the Hexaphenylethane Riddle. Angew Chem, Int Ed 50(52):12639–12642

    Article  CAS  Google Scholar 

Download references

Acknowledgements

SS acknowledges the support from the ISF (grant number 520/18). This work was performed in part at the Joint School of Nanoscience and Nanoengineering, a member of the Southeastern Nanotechnology Infrastructure Corridor (SENIC) and National Nanotechnology Coordinated Infrastructure (NNCI), which is supported by the National Science Foundation (Grant ECCS-2025462).

Funding

The Israel Science Foundation (ISF, grant number 520/18); the National Science Foundation of US (NSF, Grant ECCS-2025462).

Author information

Authors and Affiliations

Authors

Contributions

YM and SS organized the project and wrote together; DD performed computations.

Corresponding authors

Correspondence to Yirong Mo or Sason Shaik.

Ethics declarations

Conflicts of interest/Competing interests

Not applicable.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper belongs to the Topical Collection Conversation on Non-Covalent Interactions

The original online version of this article was revised due to the word “graphane” was misspelled as “graphene” in multiple places in text.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mo, Y., Danovich, D. & Shaik, S. The roles of charge transfer and polarization in non-covalent interactions: a perspective from ab initio valence bond methods. J Mol Model 28, 274 (2022). https://doi.org/10.1007/s00894-022-05187-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05187-8

Keywords

Navigation