Skip to main content
Log in

Shedding light on the optical and nonlinear optical properties of superalkali-doped borophene

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The present investigation highlights the two-dimensional design of several interesting superalkali-doped borophene derivatives for efficient nonlinear optics (NLO). The combination effects and resulting NLO responses of borophene (B36) and superalkali units (Li3O) were evaluated by orienting superalkali clusters at various sites, such as the hub, rim, and bridge, around an B36 molecule. The charge analysis was characterized by frontier and natural bond orbital analyses, a narrowed HOMO–LUMO bandgap and greater intramolecular charge transfers. Molecular electrostatic potential surfaces demonstrated enhanced optoelectronic features of these complexes that are viable due to Li3O adsorption. Singly doped and doubly doped complexes were considered, and their NLO properties were calculated. Bandgap energy was reduced approximately threefold when doped with two Li3O. As a considerably high figure of merit, first hyperpolarizability (βo) values of up to five digits (including 10,611 au for complex A) prove that these systems can be utilized as promising candidates in various NLO applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Dorn R et al (1992) Nonlinear optical materials for integrated optics: telecommunications and sensors. Adv Mater 4(7–8):464–473. https://doi.org/10.1002/adma.19920040703

    Article  CAS  Google Scholar 

  2. Smith S et al (1985) Nonlinear optical circuit elements as logic gates for optical computers: the first digital optical circuits. Opt Eng 24(4):244569. https://doi.org/10.1117/12.7973531

    Article  Google Scholar 

  3. Chen C et al (2011) Electro-optic modulator based on novel organic-inorganic hybrid nonlinear optical materials. IEEE J Quantum Electron 48(1):61–66. https://doi.org/10.1109/JQE.2011.2179019

    Article  CAS  Google Scholar 

  4. Friberg S, Smith P (1987) Nonlinear optical glasses for ultrafast optical switches. IEEE J Quantum Electron 23(12):2089–2094. https://doi.org/10.1109/JQE.1987.1073278

    Article  Google Scholar 

  5. Miller, A., K. Welford, and B. Daino (2013) Nonlinear optical materials and devices for applications in information technology. Vol. 289. 2013: Springer Science & Business Media.

  6. Yu G et al (2011) Alkali metal atom-aromatic ring: A novel interaction mode realizes large first hyperpolarizabilities of M@ AR (M= Li, Na, and K, AR= pyrrole, indole, thiophene, and benzene). J Comput Chem 32(9):2005–2011. https://doi.org/10.1002/jcc.21789

    Article  CAS  PubMed  Google Scholar 

  7. Muhammad S et al (2009) Quantum mechanical design and structure of the Li@ B10H14 basket with a remarkably enhanced electro-optical response. J Am Chem Soc 131(33):11833–11840. https://doi.org/10.1021/ja9032023

    Article  CAS  PubMed  Google Scholar 

  8. Kamalinahad S, Solimannejad M, Shakerzadeh E (2016) Nonlinear optical (NLO) response of pristine and functionalized dodecadehydrotribenzo [18] annulene ([18] DBA): a theoretical study. Bull Chem Soc Jpn 89(6):692–699. https://doi.org/10.1246/bcsj.20160006

    Article  CAS  Google Scholar 

  9. ul Ain, Q. et al. (2021) Designing of benzodithiophene acridine based donor materials with favorable photovoltaic parameters for efficient organic solar cell. Computational and Theoretical Chemistry: p. 113238. https://doi.org/10.1016/j.comptc.2021.113238

  10. Shehzad, R. A. et al. (2020) Designing of benzothiazole based non-fullerene acceptor (NFA) molecules for highly efficient organic solar cells. Computational and Theoretical Chemistry: p. 112833. https://doi.org/10.1016/j.comptc.2020.112833

  11. Shehzad RA et al (2021) Exploring the optoelectronic and third-order nonlinear optical susceptibility of cross-shaped molecules: insights from molecule to material level. J Mol Model 27(1):1–10. https://doi.org/10.1007/s00894-020-04619-7

    Article  CAS  Google Scholar 

  12. Shehzad, R. A. et al. (2021) Electro-optical and charge transport properties of chalcone derivatives using a dual approach from molecule to material level simulations. Computational and Theoretical Chemistry: p. 113349. https://doi.org/10.1016/j.comptc.2021.113349

  13. Fatima, R. et al. (2021) Exploring the potential of tetraazaacene derivatives as photovoltaic materials with enhanced photovoltaic parameters. International Journal of Quantum Chemistry: p. e26817. https://doi.org/10.1002/qua.26817

  14. Rasool A et al (2021) Designing of benzodithiophene (BDT) based non-fullerene small molecules with favorable optoelectronic properties for proficient organic solar cells. Comput Theor Chem 1203:113359. https://doi.org/10.1016/j.comptc.2021.113359

    Article  CAS  Google Scholar 

  15. Zahid S et al (2021) Tuning the optoelectronic properties of triphenylamine (TPA) based small molecules by modifying central core for photovoltaic applications. J Mol Model 27(9):1–14. https://doi.org/10.1007/s00894-021-04867-1

    Article  CAS  Google Scholar 

  16. Naeem, N. et al. Dopant free triphenylamine (TPA) based hole transport materials with excellent photovoltaic properties for high‐performance perovskite solar cells. Energy Technology. https://doi.org/10.1002/ente.202100838

  17. Gorman CB, Marder SR (1993) An investigation of the interrelationships between linear and nonlinear polarizabilities and bond-length alternation in conjugated organic molecules. Proc Natl Acad Sci 90(23):11297–11301. https://doi.org/10.1073/pnas.90.23.11297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hatua K, Nandi PK (2013) Beryllium-cyclobutadiene multidecker inverse sandwiches: electronic structure and second-hyperpolarizability. J Phys Chem A 117(47):12581–12589. https://doi.org/10.1021/jp407563f

    Article  CAS  PubMed  Google Scholar 

  19. Naseem Z et al (2021) Theoretical investigation of supramolecular hydrogen-bonded choline chloride-based deep eutectic solvents using density functional theory. Chem Phys Lett 769:138427. https://doi.org/10.1016/j.cplett.2021.138427

    Article  CAS  Google Scholar 

  20. Omidi M, Shamlouei HR, Noormohammadbeigi M (2017) The influence of Sc doping on structural, electronic and optical properties of Be 12 O 12, Mg 12 O 12 and Ca 12 O 12 nanocages: a DFT study. J Mol Model 23(3):82. https://doi.org/10.1007/s00894-017-3243-x

    Article  CAS  PubMed  Google Scholar 

  21. Hesari AM, Shamlouei HR, Toosi AR (2016) Effects of the adsorption of alkali metal oxides on the electronic, optical, and thermodynamic properties of the Mg 12 O 12 nanocage: a density functional theory study. J Mol Model 22(8):189. https://doi.org/10.1007/s00894-016-3044-7

    Article  CAS  Google Scholar 

  22. Li Z et al (2017) Bonding the superalkali M3O (M= Li and K): An effective strategy to improve the electronic and nonlinear optical properties of the inorganic B40 nanocage. Physica E 94:204–210. https://doi.org/10.1016/j.physe.2017.08.011

    Article  CAS  Google Scholar 

  23. Pichler, P. (2015) Role of defects in the dopant diffusion in Si, in Semiconductors and Semimetals. Elsevier. p. 1–46. https://doi.org/10.1016/bs.semsem.2014.11.001

  24. Fang Z et al (2018) Understanding the role of lithium doping in reducing nonradiative loss in lead halide perovskites. Advanced Science 5(12):1800736. https://doi.org/10.1002/advs.201800736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Solimannejad M, Kamalinahad S, Shakerzadeh E (2017) Li n@ B 36 (n= 1, 2) nanosheet with remarkable electro-optical properties: a DFT study. J Electron Mater 46(7):4420–4425. https://doi.org/10.1007/s11664-017-5433-9

    Article  CAS  Google Scholar 

  26. Shakerzadeh E (2019) Electro-optical properties of bowl-like B36 cluster doped with the first row transition metals: a DFT insight. Physica E 114:113599. https://doi.org/10.1016/j.physe.2019.113599

    Article  CAS  Google Scholar 

  27. Kosar N et al (2021) Theoretical investigation of halides encapsulated Na@ B40 nanocages for potential applications as anodes for sodium ion batteries. Mater Sci Semicond Process 121:105437. https://doi.org/10.1016/j.mssp.2020.105437

    Article  CAS  Google Scholar 

  28. Ullah F et al (2020) Design of novel superalkali doped silicon carbide nanocages with giant nonlinear optical response. Opt Laser Technol 122:105855. https://doi.org/10.1016/j.optlastec.2019.105855

    Article  CAS  Google Scholar 

  29. Zintl E, Morawietz W (1938) Orthosalze von Sauerstoffsäuren. Z Anorg Allg Chem 236(1):372–410. https://doi.org/10.1002/zaac.19382360134

    Article  CAS  Google Scholar 

  30. Wu C, Kudoa H, Ihle H (1979) Thermochemical properties of gaseous Li3O and Li2O2. The Journal of Chemical Physics 70(4):1815–1820. https://doi.org/10.1063/1.437656

    Article  CAS  Google Scholar 

  31. Blanchard-Desce M et al (1997) Large quadratic hyperpolarizabilities with donor–acceptor polyenes exhibiting optimum bond length alternation: correlation between structure and hyperpolarizability. Chemistry–A European Journal 3(7):1091–1104. https://doi.org/10.1002/chem.19970030717

    Article  CAS  Google Scholar 

  32. Xiao D et al (2008) A donor− nanotube paradigm for nonlinear optical materials. Nano Lett 8(9):2814–2818. https://doi.org/10.1021/nl801388z

    Article  CAS  PubMed  Google Scholar 

  33. Chen W et al (2009) Investigation on nonlinear optical properties of ladder-structure polydiacetylenes derivatives by using the elongation finite-field method. Chem Phys Lett 474(1–3):175–179. https://doi.org/10.1016/j.cplett.2009.04.049

    Article  CAS  Google Scholar 

  34. Buey J et al (1998) Synthesis and second-order nonlinear optical properties of new palladium (II) and platinum (II) Schiff-base complexes. Organometallics 17(9):1750–1755. https://doi.org/10.1021/om9708900

    Article  CAS  Google Scholar 

  35. Labat L et al (2006) (2006) Synthesis, crystal structure, and second-order nonlinear optical properties of ruthenium (ii) complexes with substituted bipyridine and phenylpyridine ligands. Eur J Inorg Chem 15:3105–3113. https://doi.org/10.1002/ejic.200600258

    Article  CAS  Google Scholar 

  36. Noormohammadbeigi M, Shamlouei HR (2018) The effect of superalkali M 3 O (M= Li, Na and K) on structure, electrical and nonlinear optical properties of C 20 fullerene nanocluster. J Inorg Organomet Polym Mater 28(1):110–120. https://doi.org/10.1007/s10904-017-0730-6

    Article  CAS  Google Scholar 

  37. Khan, A. U. et al. (2021) DFT study of superhalogen (AlF4) doped boron nitride for tuning their nonlinear optical properties. Optik: p. 166464. https://doi.org/10.1016/j.ijleo.2021.166464

  38. Khan AU et al (2021) DFT study of superhalogen and superalkali doped graphitic carbon nitride and its non-linear optical properties. RSC Adv 11(14):7779–7789. https://doi.org/10.1039/D0RA08608H

    Article  CAS  Google Scholar 

  39. Shafiq, S. et al. (2021) DFT study of OLi3 and MgF3 doped boron nitride with enhanced nonlinear optical behavior. Journal of Molecular Structure: p. 131934. https://doi.org/10.1016/j.molstruc.2021.131934

  40. Ishaq M et al (2021) DFT study of superhalogen-doped borophene with enhanced nonlinear optical properties. J Mol Model 27(6):1–11. https://doi.org/10.1007/s00894-021-04791-4

    Article  CAS  Google Scholar 

  41. Piazza ZA et al (2014) Planar hexagonal B 36 as a potential basis for extended single-atom layer boron sheets. Nature communications 5(1):1–6. https://doi.org/10.1038/ncomms4113

    Article  CAS  Google Scholar 

  42. Liu X, Hersam MC (2019) Borophene-graphene heterostructures. Science advances 5(10):eaax6444. https://doi.org/10.1126/sciadv.aax6444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Feng B et al (2016) Experimental realization of two-dimensional boron sheets. Nat Chem 8(6):563. https://doi.org/10.1038/nchem.2491

    Article  CAS  PubMed  Google Scholar 

  44. Peng B et al (2016) The electronic, optical, and thermodynamic properties of borophene from first-principles calculations. Journal of Materials Chemistry C 4(16):3592–3598. https://doi.org/10.1039/C6TC00115G

    Article  CAS  Google Scholar 

  45. Mortazavi B et al (2016) Mechanical responses of borophene sheets: a first-principles study. Phys Chem Chem Phys 18(39):27405–27413. https://doi.org/10.1039/C6CP03828J

    Article  CAS  PubMed  Google Scholar 

  46. Rostami Z, Soleymanabadi H (2016) N-H bond cleavage of ammonia on graphene-like B 36 borophene: DFT studies. J Mol Model 22(4):70. https://doi.org/10.1007/s00894-016-2954-8

    Article  CAS  PubMed  Google Scholar 

  47. Hu Y-Y et al (2010) How the number and location of lithium atoms affect the first hyperpolarizability of graphene. The Journal of Physical Chemistry C 114(46):19792–19798. https://doi.org/10.1021/jp105045j

    Article  CAS  Google Scholar 

  48. Gaussian09, R. A. (2009) 1, mj frisch, gw trucks, hb schlegel, ge scuseria, ma robb, jr cheeseman, g. Scalmani, v. Barone, b. Mennucci, ga petersson et al., gaussian. Inc., Wallingford CT, 121: p. 150-166.

  49. Bibi S, Zhang J (2015) The ratio and topology effects of benzodithiophene donor–benzooxadiazole acceptor fragments on the optoelectronic properties of donor molecules toward solar cell materials. Phys Chem Chem Phys 17(12):7986–7999. https://doi.org/10.1039/C4CP05814C

    Article  CAS  PubMed  Google Scholar 

  50. Reed AE, Weinstock RB, Weinhold F (1985) Natural population analysis. J Chem Phys 83(2):735–746. https://doi.org/10.1063/1.449486

    Article  CAS  Google Scholar 

  51. Shehzad, R. A. et al. (2020) Enhanced linear and nonlinear optical response of superhalogen (Al7) doped graphitic carbon nitride (g-C3N4). Optik: p. 165923. https://doi.org/10.1016/j.ijleo.2020.165923

  52. Ayub AR et al (2020) Super alkali (OLi3) doped boron nitride with enhanced nonlinear optical behavior. Journal of Nonlinear Optical Physics & Materials 29(01n02):2050004. https://doi.org/10.1142/S0218863520500046

    Article  Google Scholar 

  53. Shehzad RA et al (2021) Enhanced linear and nonlinear optical response of superhalogen (Al7) doped graphitic carbon nitride (g-C3N4). Optik 226:165923. https://doi.org/10.1016/j.ijleo.2020.165923

    Article  CAS  Google Scholar 

  54. Li W-L et al (2017) From planar boron clusters to borophenes and metalloborophenes. Nat Rev Chem 1(10):0071. https://doi.org/10.1038/s41570-017-0071

    Article  CAS  Google Scholar 

  55. Boukabcha N et al (2015) Theoretical investigation of electrostatic potential and non linear optical properties of M–nitroacetanilide. Rasayan J Chem 8:509–516

    CAS  Google Scholar 

  56. Muhammad S et al (2019) Benchmark study of the linear and nonlinear optical polarizabilities in proto-type NLO molecule of para-nitroaniline. J Theor Comput Chem 18(06):1950030. https://doi.org/10.1142/S0219633619500305

    Article  CAS  Google Scholar 

  57. Liu B-W et al (2017) Large second-harmonic generation responses achieved by the dimeric [Ge2Se4 (μ-Se2)] 4–functional motif in polar polyselenides A4Ge4Se12 (A= Rb, Cs). Chem Mater 29(21):9200–9207. https://doi.org/10.1021/acs.chemmater.7b03046

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are acknowledged for all the computational work which is accomplished in the computational laboratory of Punjab Bio-energy Institute, University of Agriculture (UAF), Faisalabad, 38000, Pakistan. We also thank Dr. Khurshid Ayub, COMSATS University, Islamabad, Abbottabad campus, 22060, Pakistan, for providing additional resources. The authors from King Khalid University of Saudi Arabia extend their appreciations to Deanship of Scientific Research at King Khalid University for funding the work through Research Project (R.G.P.2/156/42). The authors also acknowledge the in-depth language editing service of Scribendi for the current article.

Funding

The authors from the King Khalid University of Saudi Arabia acknowledge the Deanship of Scientific Research at King Khalid University for funding a project under grant number RGP.2/156/42.

Author information

Authors and Affiliations

Authors

Contributions

Muhammad Hussnain: the acquisition, analysis, or interpretation of data; drafted the work or revised it critically for important intellectual content.

Rao Aqil Shehzad: the acquisition, analysis, or interpretation of data; drafted the work or revised it critically for important intellectual content; approved the version to be published; and agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Shabbir Muhammad: made substantial contributions to the conception of the work; acquisition; revised it critically for important intellectual content; approved the version to be published; and agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Javed Iqbal: made substantial contributions to the conception or design of the work; acquisition; revised it critically for important intellectual content; approved the version to be published; and agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Abdullah G. Al-Sehemi: the acquisition, analysis, or interpretation of data; drafted the work or revised it critically for important intellectual content.

Saleh S. Alarfaji: the acquisition, analysis, or interpretation of data; drafted the work or revised it critically for important intellectual content.

Khurshid Ayub: the acquisition, analysis, or interpretation of data; drafted the work or revised it critically for important intellectual content.

Muhammad Yaseen: the acquisition, analysis, or interpretation of data; drafted the work or revised it critically for important intellectual content.

Corresponding authors

Correspondence to Shabbir Muhammad or Javed Iqbal.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussnain, M., Shehzad, R.A., Muhammad, S. et al. Shedding light on the optical and nonlinear optical properties of superalkali-doped borophene. J Mol Model 28, 46 (2022). https://doi.org/10.1007/s00894-022-05032-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05032-y

Keywords

Navigation