Skip to main content
Log in

Exploring the optoelectronic and third-order nonlinear optical susceptibility of cross-shaped molecules: insights from molecule to material level

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In the present investigation, we use a dual computational approach (at single molecular and solid-state levels) to explore the optoelectronic and nonlinear optical (NLO) properties of cross-shaped derivatives. The solid-state electronic band structures of the compounds 13 (the derivatives of tetracarboxylic acid in cross-shaped having the core of benzene (1), pyrazinoquinoxaline (2), and tetrathiafulvalene (3)) are calculated. The calculated band gaps for compounds 12 are found to be direct bad gaps and compound 3 to be indirect bad gap with energy gaps of 2.749, 1.765, and 0.875 eV, respectively. The important optical properties including refractive index, absorption coefficients, loss functions, and extinction coefficient of these semiconductors are calculated at bulk level to seek their potential applications as efficient optoelectronic materials. Additionally, we use the Lorentz approximation to calculate the third-order NLO susceptibilities of compounds 13 using the molecular hyperpolarizability and solid-state parameters. The calculated third-order NLO susceptibilities of compounds 13 are found to be 6.92 × 10−12, 64.0 × 10−12, and 26.3 × 10−12 esu, respectively. Thus, the present study not only provides a way to connect the calculated third-order molecular NLO polarizability to NLO susceptibilities for compounds 13 through Lorentz approximation but also highlights the importance of central core modifications on their NLO susceptibilities.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lin Q, Armin A, Nagiri RCR, Burn PL, Meredith P (2015) Electro-optics of perovskite solar cells. Nat Photonics 9:106

    Article  CAS  Google Scholar 

  2. Forrest SR (2000) Active optoelectronics using thin-film organic semiconductors. IEEE J Sel Top Quantum Electron 6:1072–1083

    Article  CAS  Google Scholar 

  3. Mhibik O, Forget S, Ott D, Venus G, Divliansky I, Glebov L et al (2016) An ultra-narrow linewidth solution-processed organic laser. Light Sci Appl 5:e16026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brabec CJ (2004) Organic photovoltaics: technology and market. Sol Energy Mater Sol Cells 83:273–292

    Article  CAS  Google Scholar 

  5. Hasegawa H, Sato T (2005) Electrochemical processes for formation, processing and gate control of III–V semiconductor nanostructures. Electrochim Acta 50:3015–3027

    Article  CAS  Google Scholar 

  6. Ruiz C, García-Frutos EM, Hennrich G, Gómez-Lor B (2012) Organic semiconductors toward electronic devices: high mobility and easy processability. J Phys Chem Lett 3:1428–1436

    Article  CAS  PubMed  Google Scholar 

  7. Cheng C, Zhu C, Huang B, Zhang H, Zhang H, Chen R et al (2019) Processing halide perovskite materials with semiconductor technology. Adv Mater Technol 4:1800729

    Article  CAS  Google Scholar 

  8. Steigerwald ML, Brus LE (1990) Semiconductor crystallites: a class of large molecules. Acc Chem Res 23:183–188

    Article  CAS  Google Scholar 

  9. Jackson TN, Lin Y-Y, Gundlach DJ, Klauk H (1998) Organic thin-film transistors for organic light-emitting flat-panel display backplanes. IEEE J Sel Top Quantum Electron 4:100–104

    Article  CAS  Google Scholar 

  10. Bharathi MD, Bhuvaneswari R, Srividya J, Vinitha G, Prithiviraajan R, Anbalagan G (2018) Synthesis, optical, experimental and theoretical investigation of third order nonlinear optical properties of 8-hydroxyquinolinium 2-carboxy-6-nitrophthalate monohydrate single crystal. J Phys Chem Solids 113:50–60

    Article  CAS  Google Scholar 

  11. Irfan A, Chaudhry AR, Al-Sehemi AG, Assiri MA, Hussain A (2019) Charge carrier and optoelectronic properties of phenylimidazo [1, 5-a] pyridine-containing small molecules at molecular and solid-state bulk scales. Comput Mater Sci 170:109179

    Article  CAS  Google Scholar 

  12. Chaudhry AR, Haq BU, Muhammad S, Laref A, Irfan A, Algarni H (2019) Structural, electronic and optical properties of furan based materials at bulk level for photovoltaic applications: a first-principles study. Comput Theor Chem 1147:20–28

    Article  CAS  Google Scholar 

  13. Muhammad S, Chaudhry AR, Al-Sehemi AG (2017) A comparative analysis of the optical and nonlinear optical properties of cross-shaped chromophores: quantum chemical approach. Optik. 147:439–445

    Article  CAS  Google Scholar 

  14. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR et al Gaussian 09; Gaussian, Inc: Wallingford, CT, 2009. Gaussian 09; Gaussian, Inc: Wallingford, CT, 2009

  15. Segall M, Lindan PJ, Probert MA, Pickard CJ, Hasnip PJ, Clark S et al (2002) First-principles simulation: ideas, illustrations and the CASTEP code. J Phys Condens Matter 14:2717

    Article  CAS  Google Scholar 

  16. Cardona M, Pollak F (1971) Optical properties and model density of states. The physics of opto-electronic materials. Springer 81–112. https://doi.org/10.1007/978-1-4684-1947-4_4

  17. Volovik G (1993) Superconductivity with lines of gap nodes: density of states in the vortex. Inst. Teoreticheskoj Fiziki 58(5–6):457–461

  18. Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MI, Refson K et al (2005) First principles methods using CASTEP. Z Kristallogr Cryst Mater 220:567–570

    Article  CAS  Google Scholar 

  19. Press WH, Vetterling W, Teukolsky SA, Flannery BP, Greenwell Yanik E (1994) Numerical recipes in fortran--the art of scientific computing. SIAM Rev 36:149

    Article  Google Scholar 

  20. Bhattacharya B, Sarkar U (2016) The effect of boron and nitrogen doping in electronic, magnetic, and optical properties of graphyne. J Phys Chem C 120:26793–26806

    Article  CAS  Google Scholar 

  21. Bhattacharya B, Paul D, Sarkar U (2019) Electronic and optical properties of XN-ynes (X= B, Al, Ga): a first-principle study with many-body effects. Appl Surf Sci 495:143612

    Article  CAS  Google Scholar 

  22. Samantaray C, Sim H, Hwang H (2005) The electronic structures and optical properties of BaTiO3 and SrTiO3 using first-principles calculations. Microelectron J 36:725–728

    Article  CAS  Google Scholar 

  23. Okoye C (2003) Optical properties of the antiperovskite superconductor MgCNi3. J Phys Condens Matter 15:833

    Article  CAS  Google Scholar 

  24. Hisaki I, Affendy NE, Tohnai N (2017) Precise elucidations of stacking manners of hydrogen-bonded two-dimensional organic frameworks composed of X-shaped π-conjugated systems. CrystEngComm. 19:4892–4898

    Article  CAS  Google Scholar 

  25. De Vos A (1980) Detailed balance limit of the efficiency of tandem solar cells. J Phys D Appl Phys 13:839

    Article  Google Scholar 

  26. Ünlü H (1992) A thermodynamic model for determining pressure and temperature effects on the bandgap energies and other properties of some semiconductors. Solid State Electron 35:1343–1352

    Article  Google Scholar 

  27. So FF, Forrest SR (1989) Organic-on-inorganic semiconductor photodetector. IEEE Trans Electron Devices 36:66–69

    Article  CAS  Google Scholar 

  28. Acharyya P, Pal P, Samanta PK, Sarkar A, Pati SK, Biswas K (2019) Single pot synthesis of indirect band gap 2D CsPb 2 Br 5 nanosheets from direct band gap 3D CsPbBr 3 nanocrystals and the origin of their luminescence properties. Nanoscale. 11:4001–4007

    Article  CAS  PubMed  Google Scholar 

  29. Paul D, Deb J, Bhattacharya B, Sarkar U (2018) Electronic and optical properties of C 24, C 12 X 6 Y 6, and X 12 Y 12 (X= B, Al and Y= N, P). J Mol Model 24:204

    Article  PubMed  Google Scholar 

  30. Bhattacharya B, Deb J, Sarkar U (2019) Boron-phosphorous doped graphyne: a near-infrared light absorber. AIP Adv 9:095031

    Article  Google Scholar 

  31. Bessler R, Duerig U, Koren E (2019) The dielectric constant of a bilayer graphene interface. Nanoscale Adv 1:1702–1706

    Article  CAS  Google Scholar 

  32. Dimitrakopoulos C, Purushothaman S, Kymissis J, Callegari A, Shaw J (1999) Low-voltage organic transistors on plastic comprising high-dielectric constant gate insulators. Science. 283:822–824

    Article  CAS  PubMed  Google Scholar 

  33. Iqbal J, Yahia I, Zahran H, AlFaify S, AlBassam A, El-Naggar A (2016) Linear and non-linear optics of nano-scale 2′, 7′ dichloro-fluorescein/FTO optical system: Bandgap and dielectric analysis. Opt Mater 62:527–533

    Article  CAS  Google Scholar 

  34. Bakulin AA, Rao A, Pavelyev VG, van Loosdrecht PH, Pshenichnikov MS, Niedzialek D et al (2012) The role of driving energy and delocalized states for charge separation in organic semiconductors. Science. 335:1340–1344

    Article  CAS  PubMed  Google Scholar 

  35. Yang D, Ma D (2019) Development of organic semiconductor photodetectors: from mechanism to applications. Adv Opt Mater 7:1800522

    Article  Google Scholar 

  36. Lehmuskero A, Kuittinen M, Vahimaa P (2007) Refractive index and extinction coefficient dependence of thin Al and Ir films on deposition technique and thickness. Opt Express 15:10744–10752

    Article  CAS  PubMed  Google Scholar 

  37. Cardona M (1961) Fundamental reflectivity spectrum of semiconductors with zinc-blende structure. J Appl Phys 32:2151–2155

    Article  Google Scholar 

  38. Knupfer M, Fink J, Fichou D (2001) Strongly confined polaron excitations in charged organic semiconductors. Phys Rev B 63:165203

    Article  Google Scholar 

  39. Brik M (2010) First-principles calculations of electronic, optical and elastic properties of ZnAl2S4 and ZnGa2O4. J Phys Chem Solids 71:1435–1442

    Article  CAS  Google Scholar 

  40. Deb J, Paul D, Sarkar U (2020) Density functional theory investigation of nonlinear optical properties of T-graphene quantum dots. J Phys Chem A 124:1312–1320

    Article  CAS  PubMed  Google Scholar 

  41. Kubodera K, Kobayashi H (1990) Determination of third-order nonlinear optical susceptibilities for organic materials by third-harmonic generation. Mol Cryst Liq Cryst 182:103–113

    Google Scholar 

  42. Kafafi Z, Lindle J, Pong R, Bartoli F, Lingg L, Milliken J (1992) Off-resonant nonlinear optical properties of C60 studied by degenerate four-wave mixing. Chem Phys Lett 188:492–496

    Article  CAS  Google Scholar 

  43. Kiran AJ, Chandrasekharan K, Nooji SR, Shashikala H, Umesh G, Kalluraya B (2006) χ (3) measurements and optical limiting in dibenzylideneacetone and its derivatives. Chem Phys 324:699–704

    Article  CAS  Google Scholar 

  44. Mathew E, Salian VV, Joe IH, Narayana B (2019) Third-order nonlinear optical studies of two novel chalcone derivatives using Z-scan technique and DFT method. Opt Laser Technol 120:105697

    Article  CAS  Google Scholar 

  45. Muhammad S, Shehzad RA, Iqbal J, Al-Sehemi AG, Saravanabhavan M, Khalid M (2019) Benchmark study of the linear and nonlinear optical polarizabilities in proto-type NLO molecule of para-nitroaniline. J Theor Comput Chem 1950030

Download references

Acknowledgments

The authors from the King Khalid University extend their appreciations to Deanship of Scientific Research at King Khalid University for funding the work through the general research project (RGP2-109-41).

Funding

Shabbir Muhammad, Abdullah G. Al-Sehemi, and Zouhaier Aloui acknowledge the funding from Deanship of Scientific Research at King Khalid University, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

Rao Aqil Shehzad and Shabbir Muhammad conceived the research idea while Javed Iqbal and Abdullah G. Al-Sehemi helped in performing calculations. Muhammad Yaseen, Zouhaier Aloui, and Muhammad Khalid have contributed in interpretations, plotting, and writing of results, respectively.

Corresponding authors

Correspondence to Shabbir Muhammad or Javed Iqbal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

No animal/human data is used here.

Consent for publication and participation

The consent of all authors and institutes is obtained for publication of present work.

Data transparency

All authors acknowledge that all data of present paper as well as software applications and code availability support their published claims and comply with field standards.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shehzad, R.A., Muhammad, S., Iqbal, J. et al. Exploring the optoelectronic and third-order nonlinear optical susceptibility of cross-shaped molecules: insights from molecule to material level. J Mol Model 27, 12 (2021). https://doi.org/10.1007/s00894-020-04619-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04619-7

Keywords

Navigation