Skip to main content
Log in

Li n @B36 (n = 1, 2) Nanosheet with Remarkable Electro-Optical Properties: A DFT Study

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this study, an attempt has been made to investigate alteration in electro-optical properties of bowl-shape B36 nanosheet due to interaction with one and two Li atoms. Our results reveal that the highest occupied molecular orbital–lowest unoccupied molecular orbital (HOMO–LUMO) gap of B36 nanosheet is decreased because of a high energy level which is formed under influence of interactions with Li atoms. Gigantic enhancement in the first hyperpolarizability (β 0) of the studied nanosheet up to 4920.62 au is indicated owing to the effect of Li adsorption. The result of the present study may be eventuating to design and fabrication of a nanosheet with tunable electro-optical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.F. Eaton, in Materials for Nonlinear Optics (American Chemical Society, 1991), p. 128

  2. D.R. Kanis, M.A. Ratner, and T.J. Marks, Chem. Rev. 94, 195 (1994).

    Article  Google Scholar 

  3. G. de la Torre, P. Vázquez, F. Agullo-Lopez, and T. Torres, Chem. Rev. 104, 3723 (2004).

    Article  Google Scholar 

  4. O. Ostroverkhova and W. Moerner, Chem. Rev. 104, 3267 (2004).

    Article  Google Scholar 

  5. K.B. Eisenthal, Chem. Rev. 106, 1462 (2006).

    Article  Google Scholar 

  6. B.J. Coe, Acc. Chem. Res. 39, 383 (2006).

    Article  Google Scholar 

  7. K. Okuno, Y. Shigeta, R. Kishi, and M. Nakano, J. Phys. Chem. Lett. 4, 2418 (2013).

    Article  Google Scholar 

  8. S. Muhammad, H.-L. Xu, R.-L. Zhong, Z.-M. Su, A.G. Al-Sehemi, and A. Irfan, J. Mater. Chem. C 1, 5439 (2013).

    Article  Google Scholar 

  9. R.-L. Zhong, H.-L. Xu, S. Muhammad, J. Zhang, and Z.-M. Su, J. Mater. Chem. 22, 2196 (2012).

    Article  Google Scholar 

  10. C. Tu, G. Yu, G. Yang, X. Zhao, W. Chen, S. Li, and X. Huang, Phys. Chem. Chem. Phys. 16, 1597 (2014).

    Article  Google Scholar 

  11. F. Zhou, J.-H. He, Q. Liu, P.-Y. Gu, H. Li, G.-Q. Xu, Q.-F. Xu, and J.-M. Lu, J. Mater. Chem. 100, 6850 (2014).

    Google Scholar 

  12. K. Hatua and P.K. Nandi, J. Phys. Chem. A 117, 12581 (2013).

    Article  Google Scholar 

  13. S. Muhammad, H. Xu, and Z. Su, J. Phys. Chem. A 115, 923 (2011).

    Article  Google Scholar 

  14. Y.-Y. Hu, S.-L. Sun, S. Muhammad, H.-L. Xu, and Z.-M. Su, J. Phys. Chem. C 114, 19792 (2010).

    Article  Google Scholar 

  15. H.-Q. Wu, R.-L. Zhong, S.-L. Sun, H.-L. Xu, and Z.-M. Su, J. Phys. Chem. C 118, 6952 (2014).

    Article  Google Scholar 

  16. P. Karamanis and C. Pouchan, J. Phys. Chem. C 116, 11808 (2012).

    Article  Google Scholar 

  17. R.-L. Zhong, H.-L. Xu, Z.-R. Li, and Z.-M. Su, J. Phys. Chem. Lett. 6, 612 (2015).

    Article  Google Scholar 

  18. W. Chen, Z.-R. Li, D. Wu, Y. Li, C.-C. Sun, and F.L. Gu, J. Am. Chem. Soc. 127, 10977 (2005).

    Article  Google Scholar 

  19. G. Yu, X. Huang, S. Li, and W. Chen, Int. J. Quantum Chem. 115, 671 (2015).

    Article  Google Scholar 

  20. S. Muhammad, H. Xu, Y. Liao, Y. Kan, and Z. Su, J. Am. Chem. Soc. 131, 11833 (2009).

    Article  Google Scholar 

  21. G. Yu, X.R. Huang, W. Chen, and C.C. Sun, J. Comput. Chem. 32, 2005 (2011).

    Article  Google Scholar 

  22. L.-J. Wang, S.-L. Sun, R.-L. Zhong, Y. Liu, D.-L. Wang, H.-Q. Wu, H.-L. Xu, X.-M. Pan, and Z.-M. Su, RSC Adv. 3, 13348 (2013).

    Article  Google Scholar 

  23. E. Shakerzdeh, E. Tahmasebi, and H.R. Shamlouei, Synt. Met. 204, 17 (2015).

    Article  Google Scholar 

  24. S. Kamalinahad, M. Solimannejad, and E. Shakerzadeh, Bull. Chem. Soc. Jpn. 89, 692 (2016).

    Article  Google Scholar 

  25. F. Ma, Z.J. Zhou, and Y.T. Liu, ChemPhysChem 13, 1307 (2012).

    Article  Google Scholar 

  26. E. Shakerzadeh, E. Tahmasebi, and Z. Biglari, J. Mol. Liq. 221, 443 (2016).

    Article  Google Scholar 

  27. R.A. Èvarestov, Theoretical Modeling of Inorganic Nanostructures: Symmetry and Ab Initio Calculations of Nanolayers, Nanotubes and Nanowires (Berlin: Springer, 2015).

    Book  Google Scholar 

  28. H. Dong, B. Lin, K. Gilmore, T. Hou, S.-T. Lee, and Y. Li, Curr. Appl. Phys. 15, 1084 (2015).

    Article  Google Scholar 

  29. H. Bai, Q. Chen, H.J. Zhai, and S.D. Li, Angew. Chem. Int. Ed. 54, 941 (2015).

    Article  Google Scholar 

  30. H.-J. Zhai, B. Kiran, J. Li, and L.-S. Wang, Nat. Mater. 2, 827 (2003).

    Article  Google Scholar 

  31. A.P. Sergeeva, B.B. Averkiev, H.-J. Zhai, A.I. Boldyrev, and L.-S. Wang, J. Chem. Phys. 134, 224304 (2011).

    Article  Google Scholar 

  32. Z.A. Piazza, W.-L. Li, C. Romanescu, A.P. Sergeeva, L.-S. Wang, and A.I. Boldyrev, J. Chem. Phys. 136, 104310 (2012).

    Article  Google Scholar 

  33. Z.A. Piazza, H.-S. Hu, W.-L. Li, Y.-F. Zhao, J. Li, and L.-S. Wang, Nat. Commun. 5, 1 (2014).

    Article  Google Scholar 

  34. H.J. Zhai, A.N. Alexandrova, K.A. Birch, A.I. Boldyrev, and L.S. Wang, Angew. Chem. Int. Ed. 42, 6004 (2003).

    Article  Google Scholar 

  35. W. Huang, A.P. Sergeeva, H.-J. Zhai, B.B. Averkiev, L.-S. Wang, and A.I. Boldyrev, Nat. Chem. 2, 202 (2010).

    Article  Google Scholar 

  36. H. Tang and S. Ismail-Beigi, Phys. Rev. Lett. 99, 115501 (2007).

    Article  Google Scholar 

  37. E.S. Penev, S. Bhowmick, A. Sadrzadeh, and B.I. Yakobson, Nano Lett. 12, 2441 (2012).

    Article  Google Scholar 

  38. X. Wu, J. Dai, Y. Zhao, Z. Zhuo, J. Yang, and X.C. Zeng, ACS Nano 6, 7443 (2012).

    Article  Google Scholar 

  39. E. Shakerzadeh, Z. Biglari, and E. Tahmasebi, Chem. Phys. Lett. 654, 76 (2016).

    Article  Google Scholar 

  40. S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010).

    Article  Google Scholar 

  41. S. Grimme, S. Ehrlich, and L. Goerigk, J. Comput. Chem. 32, 1456 (2011).

    Article  Google Scholar 

  42. Y. Zhao and D.G. Truhlar, Acc. Chem. Res. 41, 157 (2008).

    Article  Google Scholar 

  43. F. Ma, Z.-R. Li, Z.-J. Zhou, D. Wu, Y. Li, Y.-F. Wang, and Z.-S. Li, J. Phys. Chem. C 114, 11242 (2010).

    Article  Google Scholar 

  44. R.L. Zhong, H.L. Xu, S.L. Sun, Y.Q. Qiu, and Z.M. Su, Chem. Eur. J. 18, 11350 (2012).

    Article  Google Scholar 

  45. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, and D.J. Fox, Gaussian 09, Revision A.02 (Wallingford, CT: Gaussian, Inc., 2009)

  46. N.M. O’boyle, A.L. Tenderholt, and K.M. Langner, J. Comput. Chem. 29, 839 (2008).

    Article  Google Scholar 

  47. A.D. Buckingham, Adv. Chem. Phys. 12, 107 (1967).

    Google Scholar 

  48. A. McLean and M. Yoshimine, J. Chem. Phys. 47, 1927 (1967).

    Article  Google Scholar 

  49. S.F. Boys and F.D. Bernardi, Mol. Phys. 19, 553 (1970).

    Article  Google Scholar 

  50. A.E. Reed, R.B. Weinstock, and F. Weinhold, J. Chem. Phys. 83, 735 (1985).

    Article  Google Scholar 

  51. F.-F. Wang, Z.-R. Li, D. Wu, B.-Q. Wang, Y. Li, Z.-J. Li, W. Chen, G.-T. Yu, F.L. Gu, and Y. Aoki, J. Phys. Chem. B 112, 1090 (2008).

    Article  Google Scholar 

  52. H.-L. Xu, Z.-R. Li, D. Wu, B.-Q. Wang, Y. Li, F.L. Gu, and Y. Aoki, J. Am. Chem. Soc. 129, 2967 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Solimannejad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solimannejad, M., Kamalinahad, S. & Shakerzadeh, E. Li n @B36 (n = 1, 2) Nanosheet with Remarkable Electro-Optical Properties: A DFT Study. J. Electron. Mater. 46, 4420–4425 (2017). https://doi.org/10.1007/s11664-017-5433-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5433-9

Keywords

Navigation