Skip to main content

Advertisement

Log in

Novel quad-rotor-shaped photovoltaic materials: first example of fused-ring non-fullerene acceptors with proficient photovoltaic properties for high-performance solar cells

  • Original paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Development of novel materials for organic solar cells is a booming area of current research. Fused-ring electron accepters are the potential agents of revolution in organic photovoltaic devices and revealing high efficiency in organic solar cells. This study highlights the novel quad-rotor-shaped molecules as first example of efficient fused-ring non-fullerene acceptor materials with proficient photovoltaic parameters for their utilization in high-performance organic solar cells. First time, eight quad-rotor-shaped fused-ring electron accepters (QRFR-1–QRFR-8) are developed via modulating end-caps of experimentally synthesized (BFTT-TN) molecule (QRFR). Optoelectronic properties of proposed molecules are determined using frontier molecular orbitals (FMO), UV–Visible, density of state (DOS), overlap DOS (ODOS), transition density matrix (TDM) heat maps, open circuit voltage (Voc), binding energies (Eb), reorganization energy of electron (λe), hole (λh), charge transfer analysis, and compared with reference QRFR. All proposed fused-ring electron accepters disclose less energy gap and λmax in near IR region than QRFR after end-capped engineering. Highest Voc with respect to HOMOPM6–LUMOacceptor is found 1.66 V in QRFR-6 than QRFR (1.63 V). Eb values of QRFR-1QRFR-8 are found better and comparable with QRFR. The λe is found smaller than QRFR in all molecules except QRFR-5. The proposed quad-rotor-shaped molecules exhibit proficient photovoltaic features and can serve as best candidate for organic solar cells when blended with PM6 film. This study not only enlightens the researchers to use end-capped reforms as effective tactic for designing materials, but also provides novel quad-rotor-shaped materials to experimentalist for synthesis and their usage in future application of organic solar cells.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Xia T, Cai Y, Fu H, Sun Y (2019) Optimal bulk-heterojunction morphology enabled by fibril network strategy for high-performance organic solar cells. SCIENCE CHINA Chem 62(6):662–668

    CAS  Google Scholar 

  2. Dou L, Liu Y, Hong Z, Li G, Yang Y (2015) Low-bandgap near-IR conjugated polymers/molecules for organic electronics. Chem Rev 115(23):12633–12665

    CAS  PubMed  Google Scholar 

  3. Nielsen CB, Holliday S, Chen H-Y, Cryer SJ, McCulloch I (2015) Non-fullerene electron acceptors for use in organic solar cells. Acc Chem Res 48(11):2803–2812

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Liu Y, Mu C, Jiang K, Zhao J, Li Y, Zhang L, Li Z, Lai JYL, Hu H, Ma T (2015) A Tetraphenylethylene core-based 3D structure small molecular acceptor enabling efficient non-fullerene organic solar cells. Adv Mater 27(6):1015–1020

    CAS  PubMed  Google Scholar 

  5. Yao C, Yang Y, Li L, Bo M, Peng C, Wang J (2019) Quad-rotor-shaped non-fullerene electron acceptor materials with potential to enhance the photoelectric performance of organic solar cells. Journal of Materials Chemistry A 7(30):18150–18157

    CAS  Google Scholar 

  6. Cui C, Li Y, Li Y (2017) Fullerene derivatives for the applications as acceptor and cathode buffer layer materials for organic and perovskite solar cells. Adv Energy Mater 7(10):1601251

    Google Scholar 

  7. Koster L, Mihailetchi V, Blom P (2006) Ultimate efficiency of polymer/fullerene bulk heterojunction solar cells. Appl. Phys. Lett. 88(9):093511

    Google Scholar 

  8. Schmid N, Eichenberger AP, Choutko A, Riniker S, Winger M, Mark AE, van Gunsteren WF (2011) Definition and testing of the GROMOS force-field versions 54A7 and 54B7. Eur Biophys J 40(7):843–856

    CAS  PubMed  Google Scholar 

  9. Zhang Z, Li M, Liu Y, Zhang J, Feng S, Xu X, Song J, Bo Z (2017) Simultaneous enhancement of the molecular planarity and the solubility of non-fullerene acceptors: effect of aliphatic side-chain substitution on the photovoltaic performance. J Mater Chem A 5(17):7776–7783

    CAS  Google Scholar 

  10. Cheng P, Li G, Zhan X, Yang Y (2018) Next-generation organic photovoltaics based on non-fullerene acceptors. Nat Photonics 12(3):131–142

    CAS  Google Scholar 

  11. Ning L, Han G, Yi Y (2020) Intra-chain and inter-chain synergistic effect gives rise to high electron mobilities for naphthalenediimide based copolymers. J Mater Chem C 8(46):16527–16532

    CAS  Google Scholar 

  12. Quan LN, Rand BP, Friend RH, Mhaisalkar SG, Lee T-W, Sargent EH (2019) Perovskites for next-generation optical sources. Chem Rev 119(12):7444–7477

    CAS  PubMed  Google Scholar 

  13. Hou J, Inganäs O, Friend RH, Gao F (2018) Organic solar cells based on non-fullerene acceptors. Nat Mater 17(2):119–128

    CAS  PubMed  Google Scholar 

  14. Fu H, Wang Z, Sun Y (2019) Polymer donors for high-performance non-fullerene organic solar cells. Angew Chem Int Ed 58(14):4442–4453

    CAS  Google Scholar 

  15. Hartnett PE, Timalsina A, Matte HR, Zhou N, Guo X, Zhao W, Facchetti A, Chang RP, Hersam MC, Wasielewski MR (2014) Slip-stacked perylenediimides as an alternative strategy for high efficiency nonfullerene acceptors in organic photovoltaics. J Am Chem Soc 136(46):16345–16356

    CAS  PubMed  Google Scholar 

  16. Liang N, Sun K, Zheng Z, Yao H, Gao G, Meng X, Wang Z, Ma W, Hou J (2016) Perylene diimide trimers based bulk heterojunction organic solar cells with efficiency over 7%. Adv Energy Mater 6(11):1600060

    Google Scholar 

  17. Liu J, Chen S, Qian D, Gautam B, Yang G, Zhao J, Bergqvist J, Zhang F, Ma W, Ade H (2016) Fast charge separation in a non-fullerene organic solar cell with a small driving force. Nat Energy 1(7):1–7

    Google Scholar 

  18. Yao C, Yang Y, Li L, Bo M, Zhang J, Peng C, Huang Z, Wang J (2020) Elucidating the key role of the cyano (− C≡ N) group to construct environmentally friendly fused-ring electron acceptors. J Phys Chem C 124(42):23059–23068

    CAS  Google Scholar 

  19. Wang W, Yan C, Lau TK, Wang J, Liu K, Fan Y, Lu X, Zhan X (2017) Fused hexacyclic nonfullerene acceptor with strong near-infrared absorption for semitransparent organic solar cells with 9.77% efficiency. Adv Mater 29(31):1701308

    Google Scholar 

  20. Bin H, Gao L, Zhang Z-G, Yang Y, Zhang Y, Zhang C, Chen S, Xue L, Yang C, Xiao M (2016) 11.4% Efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor. Nature communications 7(1):1–11

    Google Scholar 

  21. Bin H, Zhang Z-G, Gao L, Chen S, Zhong L, Xue L, Yang C, Li Y (2016) Non-fullerene polymer solar cells based on alkylthio and fluorine substituted 2D-conjugated polymers reach 9.5% efficiency. J Am Chem Soc 138(13):4657–4664

    CAS  PubMed  Google Scholar 

  22. Li C, Xie Y, Fan B, Han G, Yi Y, Sun Y (2018) A nonfullerene acceptor utilizing a novel asymmetric multifused-ring core unit for highly efficient organic solar cells. J Mater Chem C 6(18):4873–4877

    CAS  Google Scholar 

  23. Xiao B, Tang A, Zhang J, Mahmood A, Wei Z, Zhou E (2017) Achievement of high Voc of 1.02 V for P3HT-based organic solar cell using a benzotriazole-containing non-fullerene acceptor. Adv Energy Mater 7(8):1602269

    Google Scholar 

  24. Liu F, Zhou Z, Zhang C, Vergote T, Fan H, Liu F, Zhu X (2016) A thieno [3, 4-b] thiophene-based non-fullerene electron acceptor for high-performance bulk-heterojunction organic solar cells. J Am Chem Soc 138(48):15523–15526

    CAS  PubMed  Google Scholar 

  25. Bai H, Wu Y, Wang Y, Wu Y, Li R, Cheng P, Zhang M, Wang J, Ma W, Zhan X (2015) Nonfullerene acceptors based on extended fused rings flanked with benzothiadiazolylmethylenemalononitrile for polymer solar cells. J Mater Chem A 3(41):20758–20766

    CAS  Google Scholar 

  26. Lin Y, Li T, Zhao F, Han L, Wang Z, Wu Y, He Q, Wang J, Huo L, Sun Y (2016) Structure evolution of oligomer fused-ring electron acceptors toward high efficiency of as-cast polymer solar cells. Adv Energy Mater 6(18):1600854

    Google Scholar 

  27. Li Z, Dai S, Xin J, Zhang L, Wu Y, Rech J, Zhao F, Li T, Liu K, Liu Q (2018) Enhancing the performance of the electron acceptor ITIC-Th via tailoring its end groups. Mater Chem Front 2(3):537–543

    CAS  Google Scholar 

  28. Lin Y, Wang J, Zhang ZG, Bai H, Li Y, Zhu D, Zhan X (2015) An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv Mater 27(7):1170–1174

    CAS  PubMed  Google Scholar 

  29. Zhang Z, Yuan J, Wei Q, Zou Y (2018) Small-molecule electron acceptors for efficient non-fullerene organic solar cells. Front Chem 6:414

    PubMed  PubMed Central  Google Scholar 

  30. Dai S, Zhao F, Zhang Q, Lau T-K, Li T, Liu K, Ling Q, Wang C, Lu X, You W (2017) Fused nonacyclic electron acceptors for efficient polymer solar cells. J Am Chem Soc 139(3):1336–1343

    CAS  PubMed  Google Scholar 

  31. Han G, Guo Y, Song X, Wang Y, Yi Y (2017) Terminal π–π stacking determines three-dimensional molecular packing and isotropic charge transport in an A–π–A electron acceptor for non-fullerene organic solar cells. J Mater Chem C 5(20):4852–4857

    CAS  Google Scholar 

  32. Huo Y, Gong X-T, Lau T-K, Xiao T, Yan C, Lu X, Lu G, Zhan X, Zhang H-L (2018) Dual-accepting-unit design of donor material for all-small-molecule organic solar cells with efficiency approaching 11%. Chem Mater 30(23):8661–8668

    CAS  Google Scholar 

  33. Li Y, Qian D, Zhong L, Lin J-D, Jiang Z-Q, Zhang Z-G, Zhang Z, Li Y, Liao L-S, Zhang F (2016) A fused-ring based electron acceptor for efficient non-fullerene polymer solar cells with small HOMO offset. Nano Energy 27:430–438

    CAS  Google Scholar 

  34. Cai G, Zhu J, Xiao Y, Li M, Liu K, Wang J, Wang W, Lu X, Tang Z, Lian J (2019) Fused octacyclic electron acceptor isomers for organic solar cells. J Mater Chem A 7(37):21432–21437

    CAS  Google Scholar 

  35. Frisch MJ, Trucks GW, Schlegel HB, Scuseria G, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson G, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VJ, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ, D, (2009) D. 0109 Revision D.01. Gaussian Inc., Wallingford

    Google Scholar 

  36. Dennington RD, Keith TA, Millam JM (2008) GaussView 5.0. 8. Gaussian Inc.

  37. Civalleri B, Zicovich-Wilson CM, Valenzano L, Ugliengo P (2008) B3LYP augmented with an empirical dispersion term (B3LYP-D*) as applied to molecular crystals. CrystEngComm 10(4):405–410

    CAS  Google Scholar 

  38. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393(1–3):51–57

    CAS  Google Scholar 

  39. Iikura H, Tsuneda T, Yanai T, Hirao K (2001) A long-range correction scheme for generalized-gradient-approximation exchange functionals. J Chem Phys 115(8):3540–3544

    CAS  Google Scholar 

  40. Adamo C, Barone V (1998) Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: the m PW and m PW1PW models. J Chem Phys 108(2):664–675

    CAS  Google Scholar 

  41. Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys 10(44):6615–6620

    CAS  PubMed  Google Scholar 

  42. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120(1–3):215–241

    CAS  Google Scholar 

  43. Gorelsky S (2013) SWizard Program, University of Ottawa, Ottawa, Canada, 2010. There is no corresponding record for this reference.[Google Scholar]

  44. O’boyle NM, Tenderholt AL, Langner KM (2008) Cclib: a library for package-independent computational chemistry algorithms. J Comput Chem 29(5):839–845

    PubMed  Google Scholar 

  45. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592

    PubMed  Google Scholar 

  46. Marcus RA (1993) Electron transfer reactions in chemistry. Theory and experiment. Rev Mod Phys 65(3):599

    CAS  Google Scholar 

  47. Tang S, Zhang J (2012) Design of donors with broad absorption regions and suitable frontier molecular orbitals to match typical acceptors via substitution on oligo (thienylenevinylene) toward solar cells. J Comput Chem 33(15):1353–1363

    CAS  PubMed  Google Scholar 

  48. Kim BG, Ma X, Chen C, Ie Y, Coir EW, Hashemi H, Aso Y, Green PF, Kieffer J, Kim J (2013) Energy level modulation of HOMO, LUMO, and band-gap in conjugated polymers for organic photovoltaic applications. Adv Funct Mater 23(4):439–445

    CAS  Google Scholar 

  49. Khan MU, Khalid M, Ibrahim M, Braga AAC, Safdar M, Al-Saadi AA, Janjua MRSA (2018) First theoretical framework of triphenylamine–dicyanovinylene-based nonlinear optical dyes: structural modification of π-linkers. J Phys Chem C 122(7):4009–4018

    CAS  Google Scholar 

  50. Janjua MRSA, Khan MU, Bashir B, Iqbal MA, Song Y, Naqvi SAR, Khan ZA (2012) Effect of π-conjugation spacer (C C) on the first hyperpolarizabilities of polymeric chain containing polyoxometalate cluster as a side-chain pendant: a DFT study. Comp Theor Chem 994:34–40

    CAS  Google Scholar 

  51. Janjua MRSA, Amin M, Ali M, Bashir B, Khan MU, Iqbal MA, Guan W, Yan L, Su ZM (2012) A DFT study on the two-dimensional second-order nonlinear optical (NLO) response of terpyridine-substituted hexamolybdates: physical insight on 2D inorganic–organic hybrid functional materials. Eur J Inorg Chem 2012(4):705–711

    CAS  Google Scholar 

  52. Khan MU, Ibrahim M, Khalid M, Qureshi MS, Gulzar T, Zia KM, Al-Saadi AA, Janjua MRSA (2019) First theoretical probe for efficient enhancement of nonlinear optical properties of quinacridone based compounds through various modifications. Chem Phys Lett 715:222–230

    CAS  Google Scholar 

  53. Khan MU, Ibrahim M, Khalid M, Braga AAC, Ahmed S, Sultan A (2019) Prediction of second-order nonlinear optical properties of D–p–A compounds containing novel fluorene derivatives: a promising route to giant hyperpolarizabilities. J Cluster Sci 30(2):415–430. https://doi.org/10.1007/s10876-018-01489-1

    Article  CAS  Google Scholar 

  54. Khan MU, Ibrahim M, Khalid M, Jamil S, Al-Saadi AA, Janjua MRSA (2019) Quantum chemical designing of indolo [3, 2, 1-jk] carbazole-based dyes for highly efficient nonlinear optical properties. Chem Phys Lett 719:59–66

    CAS  Google Scholar 

  55. Khan MU, Iqbal J, Khalid M, Hussain R, Braga AAC, Hussain M, Muhammad S (2019) Designing triazatruxene-based donor materials with promising photovoltaic parameters for organic solar cells. RSC Adv 9(45):26402–26418

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Shehzad RA, Iqbal J, Khan MU, Hussain R, Javed HMA, urRehman A, Alvi MU, Khalid M (2020) Designing of benzothiazole based non-fullerene acceptor (NFA) molecules for highly efficient organic solar cells. Comput Theor Chem 1181:112833

    CAS  Google Scholar 

  57. Ohta N, Yamashita K, Muraoka A (2020) Mechanism of charge transfer and separation in polymer/nonfullerene acceptor organic solar cells. Bull Am Phys Soc 65

  58. Khalid M, Khan MU, Razia E-T, Shafiq Z, Alam MM, Imran M, Akram MS (2021) Exploration of efficient electron acceptors for organic solar cells: rational design of indacenodithiophene based non-fullerene compounds. Sci Rep 11(1):1–15

    Google Scholar 

  59. Irfan M, Iqbal J, Sadaf S, Eliasson B, Rana UA, Ud-din Khan S, Ayub K (2017) Design of donor–acceptor–donor (D–A–D) type small molecule donor materials with efficient photovoltaic parameters. Int J Quantum Chem 117(10):e25363

    Google Scholar 

  60. Scharber MC, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ, Brabec CJ (2006) Design rules for donors in bulk-heterojunction solar cells—towards 10% energy-conversion efficiency. Adv Mater 18(6):789–794

    CAS  Google Scholar 

  61. Khan MU, Hussain R, YasirMehboob M, Khalid M, Shafiq Z, Aslam M, Al-Saadi AA, Jamil S, Janjua MRSA (2020) In silico modeling of new “Y-Series”-based near-infrared sensitive non-fullerene acceptors for efficient organic solar cells. ACS Omega 5(37):24125–24137

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

M. M. A. and MI express appreciation to the Deanship of Scientific Research at King Khalid University Saudi Arabia for funding through research groups program under grant number R.G.P. 2/ 109/42.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed efficiently and dedicatedly in this manuscript and their credit to this manuscript is summarized as follows: Fareeha Yasmeen contributed to the writing—original draft, investigation, validation, visualization, formal analysis, acquisition, and interpretation of data. Muhammad Usman Alvi had substantial contribution to the visualization, data curation, validation, writing—review and editing, and approval of the submitted version of the manuscript. Yusra Alvi had substantial contribution to the acquisition, visualization, validation, interpretation of data, and writing—review and editing. Muhammad Usman Khan had substantial contribution to the research design, conceptualization, methodology, project administration, investigation, data curation, supervision, review and editing, and approval of the submitted version of the manuscript. Junaid Yaqoob had substantial contribution to the formal analysis, interpretation of data, validation, writing—review and editing. Riaz Hussain had substantial contributions to the visualization, data curation, validation, writing—review and editing. Mohammed Mujahid Alam had substantial contributions to the funding, acquisition, data curation, resources, investigation, writing—review and editing. Muhammad Imran had substantial contributions to the funding, acquisition, data curation, resources, investigation, writing—review and editing. Muhammad Misbah ur Rehman had substantial contributions to the revision, writing—review and editing.

Corresponding authors

Correspondence to Muhammad Usman Alvi or Muhammad Usman Khan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yasmeen, F., Alvi, M.U., Alvi, Y. et al. Novel quad-rotor-shaped photovoltaic materials: first example of fused-ring non-fullerene acceptors with proficient photovoltaic properties for high-performance solar cells. J Mol Model 28, 18 (2022). https://doi.org/10.1007/s00894-021-05000-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-05000-y

Keywords

Navigation