Skip to main content
Log in

Modulating morphology via side-chain engineering of fused ring electron acceptors for high performance organic solar cells

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

In this work, four fused ring electron acceptors (FREAs), 2F-C5, 2F-C6, 2F-C8 and 2F-C10, are developed to investigate the effect of side-chain size on the molecular properties and photovoltaic performance of FREA systematically. The elongation of side-chains in the FREAs not only improves their solubility in the processing solvent, but also enhances their miscibility with the donor PBDB-T. It helps the FREA diffuse into the donor PBDB-T during film-formation, thus leading to the decrease in domain size and domain purity from PBDB-T:2F-C5 to PBDB-T:2F-C10 blend films in sequence. The smaller domain size affords more D/A interfaces to benefit exciton dissociation and inhibit monomolecular recombination. However, severe bimolecular recombination occurs when the domain purity decreases to a critical point. Due to the dual function of the increment of side-chain length, both short-circuit current density (JSC) and fill factor (FF) of devices exhibit an evolution of first increasing then decreasing from 2F-C5, 2F-C6, 2F-C8 to 2F-C10 based OSCs. The PBDB-T:2F-C8 based OSCs get a fine balance in morphology with moderate domain size as well as high domain purity simultaneously for the least charge carrier recombination, thus achieving the highest power conversion efficiency of 12.28% with the best JSC (21.27 mA cm−2) and FF (71.96%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shrotriya V. Nat Photon, 2009, 3: 447–449

    Article  CAS  Google Scholar 

  2. Søndergaard R, Hösel M, Angmo D, Larsen-Olsen TT, Krebs FC. Mater Today, 2012, 15: 36–49

    Article  CAS  Google Scholar 

  3. Halls JJM, Pichler K, Friend RH, Moratti SC, Holmes AB. Appl Phys Lett, 1996, 68: 3120–3122

    Article  CAS  Google Scholar 

  4. Theander M, Yartsev A, Zigmantas D, Sundström V, Mammo W, Andersson MR, Inganäs O. Phys Rev B, 2000, 61: 12957–12963

    Article  CAS  Google Scholar 

  5. Ye L, Zhao W, Li S, Mukherjee S, Carpenter JH, Awartani O, Jiao X, Hou J, Ade H. Adv Energy Mater, 2017, 7: 1602000–1602009

    Article  CAS  Google Scholar 

  6. Ye L, Hu H, Ghasemi M, Wang T, Collins BA, Kim JH, Jiang K, Carpenter JH, Li H, Li Z, McAfee T, Zhao J, Chen X, Lai JLY, Ma T, Bredas JL, Yan H, Ade H. Nat Mater, 2018, 17: 253–260

    Article  CAS  PubMed  Google Scholar 

  7. Zhao F, Wang C, Zhan X. Adv Energy Mater, 2018, 8: 1703147–1703180

    Article  CAS  Google Scholar 

  8. Lin Y, Zhan X. Mater Horiz, 2014, 1: 470–488

    Article  CAS  Google Scholar 

  9. Zhang G, Zhao J, Chow PCY, Jiang K, Zhang J, Zhu Z, Zhang J, Huang F, Yan H. Chem Rev, 2018, 118: 3447–3507

    Article  CAS  PubMed  Google Scholar 

  10. Baran D, Kirchartz T, Wheeler S, Dimitrov S, Abdelsamie M, Gorman J, Ashraf RS, Holliday S, Wadsworth A, Gasparini N, Kaienburg P, Yan H, Amassian A, Brabec CJ, Durrant JR, McCulloch I. Energy Environ Sci, 2016, 9: 3783–3793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yan C, Barlow S, Wang Z, Yan H, Jen AKY, Marder SR, Zhan X. Nat Rev Mater, 2018, 3: 18003–18021

    Article  CAS  Google Scholar 

  12. Jia B, Wu Y, Zhao F, Yan C, Zhu S, Cheng P, Mai J, Lau TK, Lu X, Su CJ, Wang C, Zhan X. Sci China Chem, 2017, 60: 257–263

    Article  CAS  Google Scholar 

  13. Dai S, Zhan X. Adv Energy Mater, 2018, 8: 1800002–1800009

    Article  CAS  Google Scholar 

  14. He D, Zhao F, Jiang L, Wang C. J Mater Chem A, 2018, 6: 8839–8854

    Article  CAS  Google Scholar 

  15. Lin Y, Zhao F, Wu Y, Chen K, Xia Y, Li G, Prasad SKK, Zhu J, Huo L, Bin H, Zhang ZG, Guo X, Zhang M, Sun Y, Gao F, Wei Z, Ma W, Wang C, Hodgkiss J, Bo Z, Inganäs O, Li Y, Zhan X. Adv Mater, 2017, 29: 1604155–1604163

    Article  CAS  Google Scholar 

  16. Lin Y, Zhao F, Prasad SKK, Chen JD, Cai W, Zhang Q, Chen K, Wu Y, Ma W, Gao F, Tang JX, Wang C, You W, Hodgkiss JM, Zhan X. Adv Mater, 2018, 30: 1706363–1706370

    Article  CAS  Google Scholar 

  17. Lin Y, Wang J, Zhang ZG, Bai H, Li Y, Zhu D, Zhan X. Adv Mater, 2015, 27: 1170–1174

    Article  CAS  PubMed  Google Scholar 

  18. Zhao F, Dai S, Wu Y, Zhang Q, Wang J, Jiang L, Ling Q, Wei Z, Ma W, You W, Wang C, Zhan X. Adv Mater, 2017, 29: 1700144–1700150

    Article  CAS  Google Scholar 

  19. Li T, Dai S, Ke Z, Yang L, Wang J, Yan C, Ma W, Zhan X. Adv Mater, 2018, 30: 1705969–1705975f

    Article  CAS  Google Scholar 

  20. Dai S, Zhao F, Zhang Q, Lau TK, Li T, Liu K, Ling Q, Wang C, Lu X, You W, Zhan X. J Am Chem Soc, 2017, 139: 1336–1343

    Article  CAS  PubMed  Google Scholar 

  21. Xiao Z, Jia X, Ding L. Sci Bull, 2017, 62: 1562–1564

    Article  CAS  Google Scholar 

  22. Zhang S, Qin Y, Zhu J, Hou J. Adv Mater, 2018, 30: 1800868–1800874

    Article  CAS  Google Scholar 

  23. Lin Y, Li T, Zhao F, Han L, Wang Z, Wu Y, He Q, Wang J, Huo L, Sun Y, Wang C, Ma W, Zhan X. Adv Energy Mater, 2016, 6: 1600854–1600862

    Article  CAS  Google Scholar 

  24. Feng S, Zhang C, Liu Y, Bi Z, Zhang Z, Xu X, Ma W, Bo Z. Adv Mater, 2017, 29: 1703527–1703533

    Article  CAS  Google Scholar 

  25. Ma Y, Zhang M, Yan Y, Xin J, Wang T, Ma W, Tang C, Zheng Q. Chem Mater, 2017, 29: 7942–7952

    Article  CAS  Google Scholar 

  26. Yang Y, Zhang ZG, Bin H, Chen S, Gao L, Xue L, Yang C, Li Y. J Am Chem Soc, 2016, 138: 15011–15018

    Article  CAS  PubMed  Google Scholar 

  27. Aldrich TJ, Swick SM, Melkonyan FS, Marks TJ. Chem Mater, 2017, 29: 10294–10298

    Article  CAS  Google Scholar 

  28. Zhang S, Yang L, Liu D, He C, Zhang J, Zhang Y, Hou J. Sci China Chem, 2017, 60: 1340–1348

    Article  CAS  Google Scholar 

  29. Li Z, Fan B, He B, Ying L, Zhong W, Liu F, Huang F, Cao Y. Sci China Chem, 2018, 61: 427–436

    Article  CAS  Google Scholar 

  30. Cardona CM, Li W, Kaifer AE, Stockdale D, Bazan GC. Adv Mater, 2011, 23: 2367–2371

    Article  CAS  PubMed  Google Scholar 

  31. Mihailetchi VD, Koster LJA, Hummelen JC, Blom PWM. Phys Rev Lett, 2004, 93: 216601–216604

    Article  CAS  PubMed  Google Scholar 

  32. Cowan SR, Roy A, Heeger AJ. Phys Rev B, 2010, 82: 245207–245216

    Article  CAS  Google Scholar 

  33. Zhao F, Wang Z, Zhang J, Zhu X, Zhang Y, Fang J, Deng D, Wei Z, Li Y, Jiang L, Wang C. Adv Energy Mater, 2016, 6: 1502120–1502125

    Google Scholar 

  34. He D, Geng X, Ding L. Polym Chem, 2016, 7: 4993–4997

    Article  CAS  Google Scholar 

  35. Hexemer A, Bras W, Glossinger J, Schaible E, Gann E, Kirian R, MacDowell A, Church M, Rude B, Padmore H. J Phys-Conf Ser, 2010, 247: 012007

    Article  Google Scholar 

  36. Gann E, Young AT, Collins BA, Yan H, Nasiatka J, Padmore HA, Ade H, Hexemer A, Wang C. Rev Sci Instrum, 2012, 83: 045110

    Article  CAS  PubMed  Google Scholar 

  37. Kim KH, Kang H, Kim HJ, Kim PS, Yoon SC, Kim BJ. Chem Mater, 2012, 24: 2373–2381

    Article  CAS  Google Scholar 

  38. Comyn J. Int J Adhes Adhes, 1992, 12: 145–149

    Article  CAS  Google Scholar 

  39. Nilsson S, Bernasik A, Budkowski A, Moons E. Macromolecules, 2007, 40: 8291–8301

    Article  CAS  Google Scholar 

  40. Duong DT, Walker B, Lin J, Kim C, Love J, Purushothaman B, Anthony JE, Nguyen TQ. J Polym Sci B Polym Phys, 2012, 50: 1405–1413

    Article  CAS  Google Scholar 

  41. Liu F, Gu Y, Wang C, Zhao W, Chen D, Briseno AL, Russell TP. Adv Mater, 2012, 24: 3947–3951

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Postdoctoral Program for Innovative Talents (BX201700253), the China Postdoctoral Science Foundation (2017M620068, 2018M630208), the National Natural Science Foundation of China (21673257, 21805288), and the Ministry of Science and Technology (2016YFA0200700).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dan He, Wei Ma or Chunru Wang.

Supporting Information

11426_2019_9453_MOESM1_ESM.pdf

Modulating Morphology via Side-Chain Engineering of Fused Ring Electron Acceptors for High Performance Organic Solar Cells

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, F., He, D., Xin, J. et al. Modulating morphology via side-chain engineering of fused ring electron acceptors for high performance organic solar cells. Sci. China Chem. 62, 790–796 (2019). https://doi.org/10.1007/s11426-019-9453-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9453-7

Navigation