Skip to main content

Advertisement

Log in

Unfused-ring Acceptors with Dithienobenzotriazole Core for Efficient Organic Solar Cells

  • Research Article
  • Invited Research Article of Special Issue on “Organic Photovoltaic Polymers”
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In recent years, non-fullerene acceptors (NFAs) with unfused-ring structure have received extensive attention due to their flexible combination of building blocks and relatively simple synthetic routes. In this work, three new A-D-C-D-A type unfused-ring acceptors (UFAs), named DTBTzEH-IC2F, DTBTzMe-IC2F and DTBTzMe-IC2Cl, were designed and synthesized with dithienobenzotriazole (DTBTz) as the core. Through modification of alkyl chain on the DTBTz unit and change of halogen atoms on the cyanoindanone end groups, the differences in optoelectronic properties of these three small molecule acceptors were investigated. The results show that changes in alkyl chain and halogen atom endow UFAs with different features, including shift in absorption, changes in energy level and molecular packing. When blended with donor PBDB-T, the organic solar cell based on DTBTzMe-IC2Cl achieves the highest device efficiency of 12.3%, while DTBTzEH-IC2F-based device obtains 11.5% efficiency and DTBTzMe-IC2F-based device obtains 12.0% efficiency. The stability tests show that all the devices obtain good efficiency retention rates. These results demonstrate that the introduction of a rigid aromatic ring DTBTz as an intermediate core not only effectively results in highly planar A-D-C-D-A small molecules, but also provides a new reference for the design and development of UFAs in OSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kaltenbrunner, M.; White, M. S.; Głowacki, E. D.; Sekitani, T.; Someya, T.; Sariciftci, N. S.; Bauer, S. Ultrathin and lightweight organic solar cells with high flexibility. Nat. Commun. 2012, 3, 770.

    Article  Google Scholar 

  2. Hoth, C. N.; Schilinsky, P.; Choulis, S. A.; Brabec, C. J. Printing highly efficient organic solar cells. Nano lett. 2008, 8, 2806–2813.

    Article  CAS  Google Scholar 

  3. Song, Y.; Zhang, K.; Dong, S.; Xia, R.; Huang, F.; Cao, Y. Semitransparent organic solar cells enabled by a sequentially deposited bilayer structure. ACS Appl. Mater. Interfaces 2020, 12, 18473–18481.

    Article  CAS  Google Scholar 

  4. Li, Y.; Xu, G.; Cui, C.; Li, Y. Flexible and semitransparent organic solar cells. Adv. Energy Mater. 2018, 8, 1701791.

    Article  Google Scholar 

  5. Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H. L.; Lau, T. K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P. A. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 2019, 3, 1140–1151.

    Article  CAS  Google Scholar 

  6. Li, S.; Li, C. Z.; Shi, M.; Chen, H. New phase for organic solar cell research: emergence of y-series electron acceptors and their perspectives. ACS Energy Lett. 2020, 5, 1554–1567.

    Article  CAS  Google Scholar 

  7. Liu, W.; Xu, X.; Yuan, J.; Leclerc, M.; Zou, Y.; Li, Y. Low-bandgap non-fullerene acceptors enabling high-performance organic solar cells. ACS Energy Lett. 2021, 6, 598–608.

    Article  CAS  Google Scholar 

  8. Meredith, P.; Li, W.; Armin, A. Nonfullerene acceptors: a renaissance in organic photovoltaics. Adv. Energy Mater. 2020, 10, 2001788.

    Article  CAS  Google Scholar 

  9. Lin, Y.; Wang, J.; Zhang, Z. G.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X. An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv. Mater. 2015, 27, 1170–1174.

    Article  CAS  Google Scholar 

  10. Wang, J.; Zhan, X. Fused-ring electron acceptors for photovoltaics and beyond. Acc. Chem. Res. 2020, 54, 132–143.

    Article  Google Scholar 

  11. Mehboob, M. Y.; Hussain, R.; Khan, M. U.; Adnan, M.; Ehsan, M. A.; Rehman, A.; Janjua, M. R. S. A. Quantum chemical design of near-infrared sensitive fused ring electron acceptors containing selenophene as π-bridge for high-performance organic solar cells. J. Phys. Org. Chem. 2021, 34, e4204.

    Article  CAS  Google Scholar 

  12. Liu, Z.; Zhang, X.; Li, P.; Gao, X. Recent development of efficient A-D-A type fused-ring electron acceptors for organic solar. Sol Energy 2018, 174, 171–188.

    Article  CAS  Google Scholar 

  13. Li, X.; Pan, F.; Sun, C.; Zhang, M.; Wang, Z.; Du, J.; Wang, J.; Xiao, M.; Xue, L.; Zhang, Z. G.; Zhang, C.; Liu, F.; Li, Y. Simplified synthetic routes for low cost and high photovoltaic performance n-type organic semiconductor acceptors. Nat. Commun. 2019, 10, 519.

    Article  CAS  Google Scholar 

  14. Li, S.; Zhan, L.; Liu, F.; Ren, J.; Shi, M.; Li, C. Z.; Russell, T. P.; Chen, H. An unfused-core-based nonfullerene acceptor enables high-efficiency organic solar cells with excellent morphological stability at high temperatures. Adv. Mater. 2018, 30, 1705208.

    Article  Google Scholar 

  15. Yang, M.; Wei, W.; Zhou, X.; Wang, Z.; Duan, C. Non-fused ring acceptors for organic solar cells. Energy Mater. 2021, 1, 100008.

    Article  Google Scholar 

  16. Wang, X.; Lu, H.; Liu, Y.; Zhang, A.; Yu, N.; Wang, H.; Li, S.; Zhou, Y.; Xu, X.; Tang, Z.; Bo, Z. Simple nonfused ring electron acceptors with 3D network packing structure boosting the efficiency of organic solar cells to 15. 44%. Adv. Energy Mater. 2021, 11, 2102591.

    Article  CAS  Google Scholar 

  17. Yu, Z. P.; Liu, Z. X.; Chen, F. X.; Qin, R.; Lau, T. K.; Yin, J. L.; Kong, X.; Lu, X.; Shi, M.; Li, C. Z.; Chen, H. Simple non-fused electron acceptors for efficient and stable organic solar cells. Nat. Commun. 2019, 10, 2152.

    Article  Google Scholar 

  18. Wen, T. J.; Liu, Z. X.; Chen, Z.; Zhou, J.; Shen, Z.; Xiao, Y.; Lu, X.; Xie, Z.; Zhu, H.; Li, C. Z.; Chen, H. Simple non-fused electron acceptors leading to efficient organic photovoltaics. Angew. Chem. Int. Ed. 2021, 60, 12964–12970.

    Article  CAS  Google Scholar 

  19. Zhang, C.; Song, X.; Liu, K. K.; Zhang, M.; Qu, J.; Yang, C.; Yuan, G. Z.; Mahmood, A.; Liu, F.; He, F.; Baran, D.; Wang, J. L. Electron-deficient and quinoid central unit engineering for unfused ring-based A1-D-A2-D-A1-type acceptor enables high performance nonfullerene polymer solar cells with high Voc and PCE simultaneously. Small 2020, 16, 1907681.

    Article  CAS  Google Scholar 

  20. Wang, Y.; Liu, S.; Gao, H.; Wang, L.; Wang, W.; Zhao, B.; Wu, H.; Gao, C. Synergistic halogenation of backbone and end group for high-performance non-fused acceptors based organic solar cells. Dyes Pigm. 2022, 200, 110178.

    Article  CAS  Google Scholar 

  21. Wang, X.; Lu, H.; Zhou, J.; Xu, X.; Zhang, C.; Huang, H.; Song, J.; Liu, Y.; Xu, X.; Xie, Z.; Tang, Z.; Bo, Z. High-performance simple nonfused ring electron acceptors with diphenylamino flanking groups. ACS Appl. Mater. Interfaces 2021, 13, 39652–39659.

    Article  CAS  Google Scholar 

  22. Pang, S.; Zhou, X.; Zhang, S.; Tang, H.; Dhakal, S.; Gu, X.; Duan, C.; Huang, F.; Cao, Y. Nonfused nonfullerene acceptors with an A-D-A′-D-A framework and a benzothiadiazole core for high-performance organic solar cells. ACS Appl. Mater. Interfaces 2020, 12, 16531–16540.

    Article  CAS  Google Scholar 

  23. Shi, Y.; Pan, J.; Zhang, H.; Yang, C.; Zhang, Z.; Deng, D.; Zhang, J.; Lu, K.; Wei, Z. The substituents on the intermediate electron-deficient groups in small molecular acceptors result appropriate morphologies for organic solar cells. Org. Electron. 2021, 93, 106133.

    Article  CAS  Google Scholar 

  24. Liu, X.; Wei, Y.; Zhang, X.; Qin, L.; Wei, Z.; Huang, H. An A-D-A′-D-A type unfused nonfullerene acceptor for organic solar cells with approaching 14% efficiency. Sci. China Chem. 2021, 64, 228–231.

    Article  CAS  Google Scholar 

  25. Geng, S. Z.; Yang, W. T.; Gao, J.; Li, S. X.; Shi, M. M.; Lau, T. K.; Lu, X. H.; Li, C. Z.; Chen, H. Z. Non-fullerene acceptors with a thieno[3,4-c]pyrrole-4,6-dione (TPD) core for efficient organic solar cells. Chinese J. Polym. Sci. 2019, 37, 1005–1014.

    Article  CAS  Google Scholar 

  26. Li, Y.; Fu, H.; Wu, Z.; Wu, X.; Wang, M.; Qin, H.; Lin, F.; Woo, H.; Jen, A. K. Y. Regulating the aggregation of unfused non-fullerene acceptors via molecular engineering towards efficient polymer solar cells. ChemSusChem 2021, 14, 3579–3589.

    Article  CAS  Google Scholar 

  27. Luo, D.; Li, L.; Shi, Y.; Zhang, J.; Wang, K.; Guo, X.; Kyaw, A. K. K. Electron-deficient diketone unit engineering for non-fused ring acceptors enabling over 13% efficiency in organic solar cells. J. Mater. Chem. A 2021, 9, 14948–14957.

    Article  CAS  Google Scholar 

  28. He, C.; Li, Y.; Li, S.; Yu, Z. P.; Li, Y.; Lu, X.; Shi, M.; Li, C. Z.; Chen, H. Near-infrared electron acceptors with unfused architecture for efficient organic solar cells. ACS Appl. Mater. Interfaces 2020, 12, 16700–16706.

    Article  CAS  Google Scholar 

  29. Tang, Y.; Feng, H.; Liang, Y.; Tang, H.; Du, Z.; Xu, J.; Huang, F.; Cao, Y. Dithienobenzothiadiazole-bridged nonfullerene electron acceptors for efficient organic solar cells. ACS Appl. Polym. Mater. 2021, DOI: https://doi.org/10.1021/acsapm.1c01406.

  30. Ma, L.; Zhang, S.; Zhu, J.; Wang, J.; Ren, J.; Zhang, J.; Hou, J. Completely non-fused electron acceptor with 3D-interpenetrated crystalline structure enables efficient and stable organic solar cell. Nat. Commun. 2021, 12, 5093.

    Article  CAS  Google Scholar 

  31. Ma, S.; Huang, Q.; Liang, Y.; Tang, H.; Chen, Y.; Zhang, J.; Zhang, K.; Huang, F.; Cao, Y. Non-fullerene electron acceptors with benzotrithiophene with π-extension terminal groups for the development of high-efficiency organic solar cells. J. Mater. Chem. C 2021, 9, 13896–13903.

    Article  CAS  Google Scholar 

  32. Yu, L.; Li, Y.; Wang, Y.; Wang, X.; Cui, W.; Wen, S.; Zheng, N.; Sun, M.; Yang, R. Fuse the π-bridge to acceptor moiety of donor-π-acceptor conjugated polymer: enabling an all-round enhancement in photovoltaic parameters of nonfullerene organic solar cells. ACS Appl. Mater. Interfaces 2019, 11, 31087–31095.

    Article  CAS  Google Scholar 

  33. Xu, J.; Feng, H.; Liang, Y.; Tang, H.; Tang, Y.; Du, Z.; Hu, Z.; Huang, F.; Cao, Y. N-alkyl chain modification in dithienobenzotriazole unit enabled efficient polymer donor for high-performance nonfullerene solar cells. J. Energy Chem. 2022, 66, 382–389.

    Article  CAS  Google Scholar 

  34. Ma, S.; Feng, H.; Liu, X.; Hu, Z.; Yang, X.; Liang, Y.; Zhang, J.; Huang, F.; Cao, Y. Dodecacyclic-fused electron acceptors with multiple electron-deficient units for efficient organic solar cells. ChemSusChem 2021, 14, 3544–3552.

    Article  CAS  Google Scholar 

  35. Wan, S.; Ma, Y.; Cai, D.; Lin, W.; Wang, P.; Wang, J.; Zheng, Q. Enhancing the photovoltaic performance of ladder-type heteroheptacene-based nonfullerene acceptors by incorporating halogen atoms on their ending groups. Adv. Funct. Mater. 2021, 31, 2010436.

    Article  CAS  Google Scholar 

  36. Zhao, Q.; Qu, J.; He, F. Chlorination: an effective strategy for high-performance organic solar cells. Adv. Sci. 2020, 7, 2000509.

    Article  CAS  Google Scholar 

  37. Cho, N.; Song, K.; Lee, J. K.; Ko, J. Facile synthesis of fluorine-substituted benzothiadiazole-based organic semiconductors and their use in solution-processed small-molecule organic solar cells. Chem. Eur. J. 2012, 18, 11433–11439.

    Article  CAS  Google Scholar 

  38. Blom, P. W. M.; Mihailetchi, V. D.; Koster, L. J. A.; Markov, D. E. Device physics of polymer:fullerene bulk heterojunction solar cells. Adv. Mater. 2007, 19, 1551–1566.

    Article  CAS  Google Scholar 

  39. Chen, Z.; Ma, S. S.; Zhang, K.; Hu, Z. C.; Yin, Q. W.; Huang, F.; Cao, Y. A near-infrared non-fullerene acceptor with thienopyrrole-expanded benzo [1,2-b:4,5-b′] dithiophene core for polymer solar cells. Chinese J. Polym. Sci. 2021, 39, 35–42.

    Article  CAS  Google Scholar 

  40. Mihailetchi, V. D.; Koster, L. J. A.; Hummelen, J. C.; Blom, P. W. M. Photocurrent generation in polymer-fullerene bulk heterojunctions. Phys. Rev. Lett. 2004, 93, 216601.

    Article  CAS  Google Scholar 

  41. Wu, L.; Zang, H.; Hsiao, Y. C.; Zhang, X.; Hu, B. Origin of the fill factor loss in bulk-heterojunction organic solar cells. Appl. Phys. Lett. 2014, 104, 153903.

    Article  Google Scholar 

  42. Mandoc, M. M.; Kooistra, F. B.; Hummelen, J. C.; De Boer, B.; Blom, P. W. M. Effect of traps on the performance of bulk heterojunction organic solar cells. Appl. Phys. Lett. 2007, 91, 263505.

    Article  Google Scholar 

  43. Smilgies, D. M. Scherrer grain-size analysis adapted to grazing-incidence scattering with area detectors. J. Appl. Crystallogr. 2009, 42, 1030–1034.

    Article  CAS  Google Scholar 

  44. Yao, Z. F.; Wang, J. Y.; Pei, J. Control of π-π stacking via crystal engineering in organic conjugated small molecule crystals. Cryst. Growth Des. 2018, 18, 7–15.

    Article  CAS  Google Scholar 

  45. Song, J.; Zhang, M.; Yuan, M.; Qian, Y.; Sun, Y.; Liu, F. Morphology characterization of bulk heterojunction solar cells. Small Methods 2018, 2, 1700229.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Basic and Applied Basic Research Major Program of Guangdong Province (No. 2019B030302007), the National Natural Science Foundation of China (No. 21875073), the Distinguished Young Scientists Program of Guangdong Province (No. 2019B151502021) and Guangdong-Hong Kong-Macao joint laboratory of optoelectronic and magnetic functional materials (No. 2019B121205002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kai Zhang or Fei Huang.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, ZY., Xu, JX., Zhang, K. et al. Unfused-ring Acceptors with Dithienobenzotriazole Core for Efficient Organic Solar Cells. Chin J Polym Sci 40, 1586–1593 (2022). https://doi.org/10.1007/s10118-022-2825-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2825-y

Keywords

Navigation