Skip to main content
Log in

Molecular structure, interactions, and antimicrobial properties of curcumin-PLGA Complexes—a DFT study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Density functional calculations are performed to study the molecular structure, interactions, and antimicrobial activity of curcumin-poly lacto glycolic acid (Cur-PLGA) complexes. The calculations are performed on curcumin (Cur), glycolic acid (SSC and AAT conformers), lactic acid (LA), Cur-SSC, Cur-AAT, Cur-LA, and Cur-PLGA complexes using dispersion corrected M06-2X functional with 6–31 + G* basis set. The condensed Fukui functions of Cur are calculated to identify the favorable reactive sites. Inter- and intramolecular H–bond interactions are analyzed in detail through natural bond orbital, Atoms in Molecule, and Reduced density gradient analyses. The interaction energy values indicate that the interaction between Cur and AAT is stronger than the other studied complexes. Further, our calculations show that the PLGA interacted with Cur is having lower LUMO energy and density values. This indicates that the antimicrobial activity is high in this complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The calculation of chemical hardness, chemical potential, condensed Fukui functions, the interaction energy between the molecules in Cur-PLGA complexes, Dual Descriptor (∆f), NBO, AIM, and RDG are given in the supporting information. Also, the optimized bond length values of SSC conformer of glycolic acid, LA and Cur, are given in Table S1 and the condensed Fukui functions of all the atoms of Cur are given in Table S2 in the supporting information file.

Code availability

GAMESS-US program is used for this study.

References

  1. Govindarajan VS, Stahl WH (1980) Turmeric — chemistry, technology, and quality. C R C Crit Rev Food Sci Nutr 12:199–301. https://doi.org/10.1080/10408398009527278

    Article  CAS  Google Scholar 

  2. Joint, F. A. O., & WHO Expert Committee on Food Additives. (2002). Safety evaluation of certain food additives and contaminants. World Health Organization.

  3. Goel A, Kunnumakkara AB, Aggarwal BB (2008) Curcumin as “Curecumin”: From kitchen to clinic. Biochem Pharmacol 75:787–809. https://doi.org/10.1016/j.bcp.2007.08.016

    Article  CAS  PubMed  Google Scholar 

  4. Srimal RC, Dhawan BN (1973) Pharmacology of diferuloyl methane (curcumin), a non-steroidal anti-inflammatory agent. J Pharm Pharmacol 25:447–452. https://doi.org/10.1111/j.2042-7158.1973.tb09131.x

    Article  CAS  PubMed  Google Scholar 

  5. Ono K, Hasegawa K, Naiki H, Yamada M (2004) Curcumin has potent anti-amyloidogenic effects for Alzheimer’s β-amyloid fibrils in vitro. J Neurosci Res 75:742–750

    Article  CAS  PubMed  Google Scholar 

  6. Anand P, Sundaram C, Jhurani S et al (2008) Curcumin and cancer: an “old-age” disease with an “age-old” solution. Cancer Lett 267:133–164

    Article  CAS  PubMed  Google Scholar 

  7. Shukla PK, Khanna VK, Ali MM et al (2008) Anti-ischemic effect of curcumin in rat brain. Neurochem Res 33:1036–1043

    Article  CAS  PubMed  Google Scholar 

  8. Kim M-K, Choi G-J, Lee H-S (2003) Fungicidal property of Curcuma longa L. rhizome-derived curcumin against phytopathogenic fungi in a greenhouse. J Agric Food Chem 51:1578–1581

    Article  CAS  PubMed  Google Scholar 

  9. Ruby AJ, Kuttan G, Dinesh Babu K et al (1995) Anti-tumour and antioxidant activity of natural curcuminoids. Cancer Lett 94:79–83. https://doi.org/10.1016/0304-3835(95)03827-J

    Article  CAS  PubMed  Google Scholar 

  10. Allen TM, Cullis PR (2004) Drug Delivery Systems: Entering the Mainstream. Science (80- ) 303:1818–1822

    Article  CAS  Google Scholar 

  11. Liechty WB, Kryscio DR, Slaughter BV, Peppas NA (2010) Polymers for drug delivery systems. Annu Rev Chem Biomol Eng 1:149–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu Z, Jiao Y, Wang Y et al (2008) Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev 60:1650–1662

    Article  CAS  PubMed  Google Scholar 

  13. Singh R, Lillard JW Jr (2009) Nanoparticle-based targeted drug delivery. Exp Mol Pathol 86:215–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chan JM, Zhang L, Yuet KP et al (2009) PLGA–lecithin–PEG core–shell nanoparticles for controlled drug delivery. Biomaterials 30:1627–1634

    Article  CAS  PubMed  Google Scholar 

  15. Kumari A, Yadav SK, Yadav SC (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 75:1–18. https://doi.org/10.1016/j.colsurfb.2009.09.001

    Article  CAS  PubMed  Google Scholar 

  16. Zhang L, Chan JM, Gu FX et al (2008) Self-assembled lipid− polymer hybrid nanoparticles: a robust drug delivery platform. ACS Nano 2:1696–1702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mukerjee A, Vishwanatha JK (2009) Formulation, characterization and evaluation of curcumin-loaded PLGA nanospheres for cancer therapy. Anticancer Res 29:3867–3875

    CAS  PubMed  Google Scholar 

  18. Song Z, Feng R, Sun M et al (2011) Curcumin-loaded PLGA-PEG-PLGA triblock copolymeric micelles: Preparation, pharmacokinetics and distribution in vivo. J Colloid Interface Sci 354:116–123. https://doi.org/10.1016/j.jcis.2010.10.024

    Article  CAS  PubMed  Google Scholar 

  19. Chereddy KK, Coco R, Memvanga PB et al (2013) Combined effect of PLGA and curcumin on wound healing activity. J Control Release 171:208–215. https://doi.org/10.1016/j.jconrel.2013.07.015

    Article  CAS  PubMed  Google Scholar 

  20. Khalil NM, do Nascimento TCF, Casa DM et al (2013) Pharmacokinetics of curcumin-loaded PLGA and PLGA-PEG blend nanoparticles after oral administration in rats. Colloids Surf B Biointerfaces 101:353–360. https://doi.org/10.1016/j.colsurfb.2012.06.024

    Article  CAS  PubMed  Google Scholar 

  21. Krausz AE, Adler BL, Cabral V et al (2015) Curcumin-encapsulated nanoparticles as innovative antimicrobial and wound healing agent. Nanomed Nanotechnol Biol Med 11:195–206

    Article  CAS  Google Scholar 

  22. Hussain Z, Thu HE, Amjad MW et al (2017) Exploring recent developments to improve antioxidant, anti-inflammatory and antimicrobial efficacy of curcumin: A review of new trends and future perspectives. Mater Sci Eng C 77:1316–1326. https://doi.org/10.1016/j.msec.2017.03.226

    Article  CAS  Google Scholar 

  23. Akl MA, Kartal-Hodzic A, Suutari T et al (2019) Real-Time Label-Free Targeting Assessment and in Vitro Characterization of Curcumin-Loaded Poly-lactic-co-glycolic Acid Nanoparticles for Oral Colon Targeting. ACS Omega 4:16878–16890. https://doi.org/10.1021/acsomega.9b02086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Preis E, Baghdan E, Agel MR et al (2019) Spray-dried curcumin loaded nanoparticles for antimicrobial photodynamic therapy. Eur J Pharm Biopharm 142:531–539. https://doi.org/10.1016/j.ejpb.2019.07.023

    Article  CAS  PubMed  Google Scholar 

  25. Dutta A, Boruah B, Saikia PM, Dutta RK (2013) Stabilization of diketo tautomer of curcumin by premicellar cationic surfactants: A spectroscopic, tensiometric and TD-DFT study. J Mol Liq 187:350–358. https://doi.org/10.1016/j.molliq.2013.09.005

    Article  CAS  Google Scholar 

  26. Karataş D, Tekin A, Bahadori F, Çelik MS (2017) Interaction of curcumin in a drug delivery system including a composite with poly(lactic-: Co -glycolic acid) and montmorillonite: A density functional theory and molecular dynamics study. J Mater Chem B 5:8070–8082. https://doi.org/10.1039/c7tb01964e

    Article  CAS  PubMed  Google Scholar 

  27. Pitchumani Violet Mary C, Vijayakumar S, Shankar R (2019) Inhibition mechanism of cathepsin B by curcumin molecule: a DFT study. Theor Chem Acc 138:21. https://doi.org/10.1007/s00214-018-2410-1

    Article  CAS  Google Scholar 

  28. Ravichandran M, Hettiarachchy NS, Ganesh V et al (2011) Enhancement of antimicrobial activities of naturally occurring phenolic compounds by nanoscale delivery against listeria monocytogenes, escherichia coli O157:H7 and salmonella typhimurium in broth and chicken meat system. J Food Saf 31:462–471. https://doi.org/10.1111/j.1745-4565.2011.00322.x

    Article  CAS  Google Scholar 

  29. des Rieux A, Fievez V, Garinot M, et al (2006) Nanoparticles as potential oral delivery systems of proteins and vaccines: A mechanistic approach. J Control Release 116:1–27. https://doi.org/10.1016/j.jconrel.2006.08.013

    Article  CAS  Google Scholar 

  30. Fu Y, Kao WJ (2010) Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. Expert Opin Drug Deliv 7:429–444. https://doi.org/10.1517/17425241003602259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pitchumani Violet Mary C, Shankar R, Vijayakumar S (2019) Theoretical insights into the metal chelating and antimicrobial properties of the chalcone based Schiff bases. Mol Simul 45:636–645. https://doi.org/10.1080/08927022.2019.1573370

    Article  CAS  Google Scholar 

  32. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  33. Mardirossian N, Head-Gordon M (2016) How accurate are the Minnesota density functionals for noncovalent interactions, isomerization energies, thermochemistry, and barrier heights involving molecules composed of main-group elements? J Chem Theory Comput 12:4303–4325

    Article  CAS  PubMed  Google Scholar 

  34. Reva ID, Jarmelo S, Lapinski L, Fausto R (2004) First experimental evidence of the third conformer of glycolic acid: Combined matrix isolation, FTIR and theoretical study. Chem Phys Lett 389:68–74. https://doi.org/10.1016/j.cplett.2004.03.062

    Article  CAS  Google Scholar 

  35. Godfrey PD, Rodgers FM, Brown RD (1997) Theory versus Experiment in Jet Spectroscopy: Glycolic Acid. J Am Chem Soc 119:2232–2239. https://doi.org/10.1021/ja9616793

    Article  CAS  Google Scholar 

  36. Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516. https://doi.org/10.1021/ja00364a005

    Article  CAS  Google Scholar 

  37. Parr RG, Donnelly RA, Levy M, Palke WE (2003) Electronegativity: The density functional viewpoint. J Chem Phys 68:3801–3807. https://doi.org/10.1063/1.436185

    Article  Google Scholar 

  38. Yang W, Mortier WJ (1986) The Use of Global and Local Molecular Parameters for the Analysis of the Gas-Phase Basicity of Amines. J Am Chem Soc 108:5708–5711. https://doi.org/10.1021/ja00279a008

    Article  CAS  PubMed  Google Scholar 

  39. Bader RFW (1985) Atoms in molecules. Acc Chem Res 18:9–15

    Article  CAS  Google Scholar 

  40. Popelier PLA, Bader RFW (1992) The existence of an intramolecular C– H– O hydrogen bond in creatine and carbamoyl sarcosine. Chem Phys Lett 189:542–548

    Article  CAS  Google Scholar 

  41. Cheeseman JR, Carroll MT, Bader RFW (1988) The mechanics of hydrogen bond formation in conjugated systems. Chem Phys Lett 143:450–458

    Article  CAS  Google Scholar 

  42. Koch U, Popelier PLA (1995) Characterization of C-H-O Hydrogen Bonds on the Basis of the Charge Density. J Phys Chem 99:9747–9754. https://doi.org/10.1021/j100024a016

    Article  CAS  Google Scholar 

  43. Koopmans T (1934) Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica 1:104–113. https://doi.org/10.1016/S0031-8914(34)90011-2

    Article  Google Scholar 

  44. Lu T, Chen F (2012) Multiwfn: A multifunctional wavefunction analyzer. J Comput Chem 33:580–592. https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  45. Schmidt MW, Baldridge KK, Boatz JA et al (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  46. Kolandaivel P, Senthilkumar K (2001) Ab initio and DFT studies on structure and stability of aliphatic aldoxime molecules. J Mol Struct THEOCHEM 535:61–70. https://doi.org/10.1016/S0166-1280(00)00571-6

    Article  CAS  Google Scholar 

  47. Blom CE, Bauder A (1982) Structure of Glycolic Acid determined by Microwave Spectroscopy. J Am Chem Soc 104:2993–2996. https://doi.org/10.1021/ja00375a009

    Article  CAS  Google Scholar 

  48. Borba A, Gómez-Zavaglia A, Lapinski L, Fausto R (2004) Rotational isomers of lactic acid: First experimental observation of higher energy forms. Phys Chem Chem Phys 6:2101–2108. https://doi.org/10.1039/b316642b

    Article  CAS  Google Scholar 

  49. Kolev TM, Velcheva EA, Stamboliyska BA, Spiteller M (2005) DFT and experimental studies of the structure and vibrational spectra of curcumin. Int J Quantum Chem 102:1069–1079. https://doi.org/10.1002/qua.20469

    Article  CAS  Google Scholar 

  50. Parr RG, Yang W (1984) Density functional approach to the frontier-electron theory of chemical reactivity. J Am Chem Soc 106:4049–4050

    Article  CAS  Google Scholar 

  51. Elshakre ME, Noamaan MA, Moustafa H, Butt H (2020) Density functional theory, chemical reactivity, pharmacological potential and molecular docking of dihydrothiouracil-indenopyridopyrimidines with human-DNA topoisomerase II. Int J Mol Sci 21:1–27. https://doi.org/10.3390/ijms21041253

    Article  CAS  Google Scholar 

  52. Morell C, Grand A, Toro-Labbe A (2005) New dual descriptor for chemical reactivity. J Phys Chem A 109:205–212

    Article  CAS  PubMed  Google Scholar 

  53. Rozas I, Alkorta I, Elguero J (2000) Behavior of Ylides Containing N, O, and C Atoms as Hydrogen Bond Acceptors. J Am Chem Soc 122:11154–11161. https://doi.org/10.1021/ja0017864

    Article  CAS  Google Scholar 

  54. Contreras-García J, Boto RA, Izquierdo-Ruiz F et al (2016) A benchmark for the non-covalent interaction (NCI) index or… is it really all in the geometry? Theor Chem Acc 135:242. https://doi.org/10.1007/s00214-016-1977-7

    Article  CAS  Google Scholar 

  55. Nkungli NK, Ghogomu JN (2017) Theoretical analysis of the binding of iron(III) protoporphyrin IX to 4-methoxyacetophenone thiosemicarbazone via DFT-D3, MEP, QTAIM, NCI, ELF, and LOL studies. J Mol Model 23:200. https://doi.org/10.1007/s00894-017-3370-4

    Article  CAS  PubMed  Google Scholar 

  56. Tsipis AC, Tsipis CA, Valla V (2003) Quantum chemical study of the coordination of glycolic acid conformers and their conjugate bases to [Ca(OH2)n]2+ (n = 0–4) ions. J Mol Struct THEOCHEM 630:81–100. https://doi.org/10.1016/S0166-1280(03)00148-9

    Article  CAS  Google Scholar 

  57. Asiri AM, Khan SA, Marwani HM, Sharma K (2013) Synthesis, spectroscopic and physicochemical investigations of environmentally benign heterocyclic Schiff base derivatives as antibacterial agents on the bases of in vitro and density functional theory. J Photochem Photobiol B Biol 120:82–89

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M. G. sincerely thanks Kalasalingam Academy of Research and Education (Deemed to be University) for the award of University Research Fellowship (URF). S.P. is thankful to the management of Kalasalingam Academy of Research and Education (Deemed to be University) for providing financial support to establish a computational research facility at the International Research Centre, Kalasalingam Academy of Research and Education.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Selvarengan Paranthaman; Methodology: Selvarengan Paranthaman; Formal analysis and investigation: Mahendiraprabu Ganesan; Writing—original draft preparation: Mahendiraprabu Ganesan; Writing—review and editing: Selvarengan Paranthaman; Supervision: Selvarengan Paranthaman, All authors read and approved the final manuscript.

Corresponding author

Correspondence to Selvarengan Paranthaman.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 44 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganesan, M., Paranthaman, S. Molecular structure, interactions, and antimicrobial properties of curcumin-PLGA Complexes—a DFT study. J Mol Model 27, 329 (2021). https://doi.org/10.1007/s00894-021-04952-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04952-5

Keywords

Navigation