Skip to main content
Log in

Synthesis, Antibacterial, Antioxidant and DFT Computational Studies of Acetophenone-Based Chalcone Derivatives

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

Six B-ring substituted chalcone derivatives were synthesized by aldol condensation reactions of acetophenone with ortho-, meta- and para-hydroxy and their corresponding nitro group-functionalized benzaldehydes. These were used to study their spectral, anti-bacterial and anti-oxidant properties. The FT-IR and 1H and 13C-NMR spectra of these derivatives, as well as in some cases from the literature, were used to confirm their structural information. A density functional theory (DFT) computational study was undertaken to investigate the changes resulting from the replacement of the electron-donating hydroxyl groups with the corresponding electron-withdrawing nitro groups and with consideration of all of their possible E/Z and s-cis/s-trans geometrical and regioisomers. The DFT computational data show that in all cases except for the B-ring ortho-nitro-substituted derivatives 5a and its regioisomer 5a′, the s-cis-(E) isomers, are thermodynamically more stable than those of the corresponding s-cis-(Z)– and s-trans-(E/Z) isomers. Furthermore, time-dependent-DFT calculations were conducted to generate vertical excitation energies, absorption wavelengths and the oscillator strengths of the chalcone derivatives. The HOMO–LUMO results and some other physicochemical parameters of the derivatives are compared with their chemical reactivities.

Graphical Abstract

Synthesis, antibacterial, antioxidant and DFT computational studies of acetophenone-based chalcone derivatives

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

The data that support the findings of this study are available in the supplementary material of this article.

References

  1. Rammohan A, Reddy JS, Sravya G et al (2020) Chalcone synthesis, properties and medicinal applications: a review. Environ Chem Lett 18:433–458. https://doi.org/10.1007/s10311-019-00959-w

    Article  CAS  Google Scholar 

  2. Jasim HA, Nahar L, Jasim MA et al (2021) Chalcones: synthetic chemistry follows where nature leads. Biomolecules 11:1203. https://doi.org/10.3390/biom11081203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ouyang Y, Li J, Chen X et al (2021) Chalcone derivatives: role in anticancer therapy. Biomolecules 11:894. https://doi.org/10.3390/biom11060894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Razaq Tukur A, Dama Habila J, Gbekele-Oluwa Ayo R, Risikat Agbeke Lyun O (2022) Issue 2 pharmacological applications of chalcones and their derivatives—a mini review. J Chem Rev 4:100–119

    Google Scholar 

  5. Zhou K, Yang S, Li S-M (2021) Naturally occurring prenylated chalcones from plants: structural diversity, distribution, activities and biosynthesis. Nat Prod Rep 38:2236–2260. https://doi.org/10.1039/d0np00083c

    Article  CAS  PubMed  Google Scholar 

  6. Xu M, Wu P, Shen F et al (2019) Chalcone derivatives and their antibacterial activities: current development. Bioorg Chem 91:103133. https://doi.org/10.1016/j.bioorg.2019.103133

    Article  CAS  PubMed  Google Scholar 

  7. Shaik A, Bhandare RR, Palleapati K et al (2020) Antimicrobial, antioxidant, and anticancer activities of some novel isoxazole ring containing chalcone and dihydropyrazole derivatives. Molecules 25:1047. https://doi.org/10.3390/molecules25051047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yang J-L, Ma Y-H, Li Y-H et al (2019) Design, synthesis, and anticancer activity of novel trimethoxyphenyl-derived chalcone-benzimidazolium salts. ACS Omega 4:20381–20393. https://doi.org/10.1021/acsomega.9b03077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lagu SB, Yejella RP, Bhandare RR, Shaik AB (2020) Design, synthesis, and antibacterial and antifungal activities of novel trifluoromethyl and trifluoromethoxy substituted chalcone derivatives. Pharmaceuticals 13:375. https://doi.org/10.3390/ph13110375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Garcia TR, de Freitas TS, dos Santos HS et al (2020) Structural, vibrational and electrochemical analysis and antibiotic activity study of chalcone (2E)-1-(3ʹ,-methoxy-4ʹ,-hydroxyphenyl)-3-(3-nitrophenyl)prop-2-en-1-one. J Mol Struct 1216:128358. https://doi.org/10.1016/j.molstruc.2020.128358

    Article  CAS  Google Scholar 

  11. Mohamed MFA, Abuo-Rahma GE-DA (2020) Molecular targets and anticancer activity of quinoline–chalcone hybrids: literature review. RSC Adv 10:31139–31155. https://doi.org/10.1039/D0RA05594H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Elkanzi NAA, Hrichi H, Alolayan RA et al (2022) Synthesis of chalcones derivatives and their biological activities: a review. ACS Omega 7:27769–27786. https://doi.org/10.1021/acsomega.2c01779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pérez-González A, Castañeda-Arriaga R, Guzmán-López EG et al (2022) Chalcone derivatives with a high potential as multifunctional antioxidant neuroprotectors. ACS Omega 7:38254–38268. https://doi.org/10.1021/acsomega.2c05518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Russell AE, Gines BR (2023) Chalcones: potential chemotherapeutic compounds and educational tools for closing the loop in STEM. Acc Chem Res. https://doi.org/10.1021/acs.accounts.2c00583

    Article  PubMed  Google Scholar 

  15. Islam MM, Sharma B, Rahman S et al (2021) Synthesis, structures and DFT calculations of 9-methoxy[3.3] metaparacyclophanes and their Lewis acid-catalyzed reactivity. J Mol Struct 1236:130334. https://doi.org/10.1016/j.molstruc.2021.130334

    Article  CAS  Google Scholar 

  16. Islam MM, Feng X, Rahman S et al (2019) Synthesis, structures and Lewis-acid-induced isomerization of 8-methoxy[2.2]metaparacyclophanes and a DFT study. ChemistrySelect 4:3630–3635. https://doi.org/10.1002/slct.201900190

    Article  CAS  Google Scholar 

  17. Islam MM, Wang C-Z, Sharma B et al (2022) Synthesis and DFT conformational analysis of trimethyl-functionalized [2.2]metacyclophanes and their Lewis-acid assisted reactions. J Mol Struct 1266:133523. https://doi.org/10.1016/j.molstruc.2022.133523

    Article  CAS  Google Scholar 

  18. Hicks LD, Fry AJ, Kurzweil VC (2004) Ab initio computation of electron affinities of substituted benzalacetophenones (chalcones): a new approach to substituent effects in organic electrochemistry. Electrochim Acta 50:1039–1047. https://doi.org/10.1016/j.electacta.2004.08.003

    Article  CAS  Google Scholar 

  19. Kozlowski D, Trouillas P, Calliste C et al (2007) Density functional theory study of the conformational, electronic, and antioxidant properties of natural chalcones. J Phys Chem A 111:1138–1145. https://doi.org/10.1021/jp066496+

    Article  CAS  PubMed  Google Scholar 

  20. Mittal A, Devi SP, Kakkar R (2020) A DFT study of the conformational and electronic properties of echinatin, a retrochalcone, and its anion in the gas phase and aqueous solution. Struct Chem 31:2513–2524. https://doi.org/10.1007/s11224-020-01598-6

    Article  CAS  Google Scholar 

  21. Omar S, Shkir M, Ajmal Khan M et al (2020) A comprehensive study on molecular geometry, optical, HOMO-LUMO, and nonlinear properties of 1,3-diphenyl-2-propen-1-ones chalcone and its derivatives for optoelectronic applications: a computational approach. Optik (Stuttg) 204:164172. https://doi.org/10.1016/j.ijleo.2020.164172

    Article  CAS  Google Scholar 

  22. Wong QA, Quah CK, Wong XA et al (2022) Structure-property relationship of three 2-chloro-4-fluoro chalcone derivatives: a comprehensive study on linear and non-linear optical properties, structural characterizations and density functional theory. J Mol Struct 1267:133584. https://doi.org/10.1016/j.molstruc.2022.133584

    Article  CAS  Google Scholar 

  23. Ahmad A, Sinha RK, Kulkarni SD et al (2023) Synthesis, photophysical properties and DFT studies of chalcones and their 2-methoxy-3-cyanopyridine derivatives. J Photochem Photobiol A Chem 437:114494. https://doi.org/10.1016/j.jphotochem.2022.114494

    Article  CAS  Google Scholar 

  24. Irie K, Watanabe K (1980) Aldol condensations with metal(II) complex catalysts. Bull Chem Soc Jpn 53:1366–1371. https://doi.org/10.1246/bcsj.53.1366

    Article  CAS  Google Scholar 

  25. Wang H, Wang Y, Chen Z et al (2005) Hydroxychalcones exhibit differential effects on XRE transactivation. Toxicology 207:303–313. https://doi.org/10.1016/j.tox.2004.10.005

    Article  CAS  PubMed  Google Scholar 

  26. Kim SY, Lee I-S, Moon A (2013) 2-Hydroxychalcone and xanthohumol inhibit invasion of triple negative breast cancer cells. Chem Biol Interact 203:565–572. https://doi.org/10.1016/j.cbi.2013.03.012

    Article  CAS  PubMed  Google Scholar 

  27. Syam S, Abdelwahab SI, Al-Mamary MA, Mohan S (2012) Synthesis of chalcones with anticancer activities. Molecules 17:6179–6195. https://doi.org/10.3390/molecules17066179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mazimba O, Masesane IB, Majinda RR (2011) An efficient synthesis of flavans from salicylaldehyde and acetophenone derivatives. Tetrahedron Lett 52:6716–6718. https://doi.org/10.1016/j.tetlet.2011.09.147

    Article  CAS  Google Scholar 

  29. Xue Y, Zhang L, Li Y et al (2013) A DFT study on the structure and radical scavenging activity of newly synthesized hydroxychalcones. J Phys Org Chem 26:240–248. https://doi.org/10.1002/poc.3074

    Article  CAS  Google Scholar 

  30. Yadav HL, Gupta P, Pawar RS et al (2011) Synthesis and biological evaluation of anti-inflammatory activity of 1,3 diphenyl propenone derivatives. Med Chem Res 20:461–465. https://doi.org/10.1007/s00044-010-9339-9

    Article  CAS  Google Scholar 

  31. Zeraik ML, Ximenes VF, Regasini LO et al (2012) 4′-Aminochalcones as novel inhibitors of the chlorinating activity of myeloperoxidase. Curr Med Chem 19:5405–5413. https://doi.org/10.2174/092986712803833344

    Article  CAS  PubMed  Google Scholar 

  32. Passalacqua TG, Dutra LA, de Almeida L et al (2015) Synthesis and evaluation of novel prenylated chalcone derivatives as anti-leishmanial and anti-trypanosomal compounds. Bioorg Med Chem Lett 25:3342–3345. https://doi.org/10.1016/j.bmcl.2015.05.072

    Article  CAS  PubMed  Google Scholar 

  33. Palanco AC, De Lacorte Singulani J, Costa-Orlandi CB et al (2017) Activity of 3′-hydroxychalcone against Cryptococcus gattii and toxicity, and efficacy in alternative animal models. Future Microbiol 12:1123–1134. https://doi.org/10.2217/fmb-2017-0062

    Article  CAS  PubMed  Google Scholar 

  34. Attarde M, Vora A, Varghese A, Kachwala Y (2014) Synthesis and evaluation of chalcone derivatives for its alpha amylase inhibitory activity. Org Chem: Indian J 10:192–204

    CAS  Google Scholar 

  35. Shriner RL, Kurosawa T (1930) Chalcones. ii. Decomposition by alkali. J Am Chem Soc 52:2538–2540

    Article  CAS  Google Scholar 

  36. Cin GT, Demirel S, Cakici A (2011) Synthesis of novel ferrocenyl-containing pyrazolo[4,3-c]quinolines. J Organomet Chem 696:613–621. https://doi.org/10.1016/j.jorganchem.2010.10.006

    Article  CAS  Google Scholar 

  37. Kumar A, Akanksha (2007) Zirconium chloride catalyzed efficient synthesis of 1,3-diaryl-2-propenones in solvent free conditions via aldol condensation. J Mol Catal A Chem 274:212–216. https://doi.org/10.1016/j.molcata.2007.05.016

    Article  CAS  Google Scholar 

  38. Pati HN, Das U, De CE et al (2007) Molecular modifications of 2-arylidene-1-indanones leading to increased cytotoxic potencies. J Enzyme Inhib Med Chem 22:37–42. https://doi.org/10.1080/14756360600958057

    Article  CAS  PubMed  Google Scholar 

  39. Yakalı G, Çakıcı A, Eke C et al (2017) Synthesis, spectroscopic and X-ray structural characterization, quantum chemical studies and investigation of gama-irradiated effects of the novel hydrazone compound: [(E)-3-(2-nitrophenyl)-(E)-1-(2-phenylhydrazono)]-1-phenylallylidene. J Mol Struct 1134:244–252. https://doi.org/10.1016/j.molstruc.2016.12.092

    Article  CAS  Google Scholar 

  40. Jin H, Xiang L, Wen F et al (2008) Improved synthesis of chalconoid-like compounds under ultrasound irradiation. Ultrason Sonochem 15:681–683. https://doi.org/10.1016/j.ultsonch.2008.01.006

    Article  CAS  PubMed  Google Scholar 

  41. Kumari R, Varghese A, George L, Sudhakar YN (2017) Effect of solvent polarity on the photophysical properties of chalcone derivatives. RSC Adv 7:24204–24214. https://doi.org/10.1039/C7RA01705G

    Article  CAS  Google Scholar 

  42. Wang P, Wu S (1994) A study on the spectroscopy and photophysics of 4′-N, N-dimethylaminoflavone derivatives. J Lumin 62:33–39. https://doi.org/10.1016/0022-2313(94)90073-6

    Article  CAS  Google Scholar 

  43. Hudzicki J (2009) Kirby–Bauer disk diffusion susceptibility test protocol. Am Soc Microbiol 15:55–63

    Google Scholar 

  44. Holder IA, Boyce ST (1994) Agar well diffusion assay testing of bacterial susceptibility to various antimicrobials in concentrations non-toxic for human cells in culture. Burns 20:426–429. https://doi.org/10.1016/0305-4179(94)90035-3

    Article  CAS  PubMed  Google Scholar 

  45. Braca A, De Tommasi N, Di Bari L et al (2001) Antioxidant principles from Bauhinia tarapotensis. J Nat Prod 64:892–895. https://doi.org/10.1021/np0100845

    Article  CAS  PubMed  Google Scholar 

  46. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr. JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2019) Gaussian 16, Revision C.01. Gaussian, Inc., Wallingford

  47. Kumer A, Sarker MN, Paul S (2019) The thermo physical, HOMO, LUMO, vibrational spectroscopy and QSAR study of morphonium formate and acetate Ionic Liquid Salts using computational method. Turk Comput Theor Chem 3:59–68. https://doi.org/10.33435/tcandtc.481878

    Article  CAS  Google Scholar 

  48. Fukui K, Yonezawa T, Shingu H (1952) A molecular orbital theory of reactivity in aromatic hydrocarbons. J Chem Phys 20:722–725. https://doi.org/10.1063/1.1700523

    Article  CAS  Google Scholar 

  49. Luo J, Xue ZQ, Liu WM et al (2006) Koopmans’ theorem for large molecular systems within density functional theory. J Phys Chem A 110:12005–12009. https://doi.org/10.1021/jp063669m

    Article  CAS  PubMed  Google Scholar 

  50. Nath A, Kumer A, Khan MW (2021) Synthesis, computational and molecular docking study of some 2, 3-dihydrobenzofuran and its derivatives. J Mol Struct 1224:129225. https://doi.org/10.1016/j.molstruc.2020.129225

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Bangladesh Council of Scientific and Industrial Research (BCSIR) and partly funded (Project no. SRG-226626) by Ministry of Science and Technology (MOST, BD), Bangladesh. Dr. Md. Wahidul Islam and Rabeya Akter are thankful to BCSIR for Postdoctoral and Prof. Nurul Afsar Khan Postgraduate Fellowship. The authors extend their appreciation to Bank Aljazira for funding this project and also acknowledge King Abdullah Institute for Nanotechnology at King Saud University for supporting this initiative.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Md. Monarul Islam, Md. Aftab Ali Shaikh or Paris E. Georghiou.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

42250_2024_891_MOESM1_ESM.docx

Supplementary file1. The experimental information, spectroscopic studies (including 1HNMR, IR spectra), and theoretical studies are reported in the supporting information. (DOCX 6087 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, M.W., Akter, R., Islam, M.M. et al. Synthesis, Antibacterial, Antioxidant and DFT Computational Studies of Acetophenone-Based Chalcone Derivatives. Chemistry Africa 7, 1803–1816 (2024). https://doi.org/10.1007/s42250-024-00891-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-024-00891-9

Keywords

Navigation