Skip to main content
Log in

Structural and molecular properties of complexes of biomolecules and metal–organic frameworks: dispersion-corrected DFT treatment

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Investigation of complexes of nanostructured materials and biomolecules has attracted much attention by various researchers as it can contribute to coherent growth and extended application of nanostructures in different technologies. In this research, following a comprehensive approach, we examined the interaction between different amino acids and metal–organic frameworks (MOFs) at atomic scale using computational chemistry. For this purpose, we employed the density functional theory (DFT-D2) calculations to afford a molecular description of the interaction properties of the amino acids and MOF-5 by examining the interaction energy and the electronic structure of the amino acid/MOF complexes. We found strong interactions between the amino acids and MOF through their polar groups as well as aromatic rings in the gas phase. However, our findings were significantly different in solvent media, where water molecules prevent the amino acids from approaching the active sites of MOF, causing weak attractions between them. The evaluation of nature of interaction between the amino acids and MOF by the atoms-in-molecules (AIM) theory shows that the electrostatic attractions are the main force contributing to bond formation between the interacting entities. Furthermore, our DFT-PBE model of theory was validated against the comprehensive MP2 quantum level of theory.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ma T, Li H, Ma J, Cheng P (2020) Application of MOF-based materials in electrochemical sensing. Dalton Trans 49:17121–17129

    Article  CAS  PubMed  Google Scholar 

  2. Chen L, Zhang X, Cheng X, Xie Z, Kuang Q, Zheng L (2020) The function of metal-organic frameworks in application of MOF-based composites. Nanoscale Adv 2:2628–2647

    Article  CAS  Google Scholar 

  3. Tan X, Wu Y, Lin X, Zeb A, Xu X, Luo Y, Liu J (2020) Application of MOF-derived transition metal oxides and composites as anodes for lithium-ion batteries. Inorg Chem Front 7:4939–4955

    Article  CAS  Google Scholar 

  4. Saha D, Deng S (2010) Structural stability of metal organic framework MOF-177. J Phys Chem Lett 1:73–78

    Article  CAS  Google Scholar 

  5. Hu F, Di Z, Wu M, Li J (2020) Building a robust 3D Ca-MOF by a new square Ca4O SBU for purification of natural gas. Dalton Trans 49:8836–8840

    Article  CAS  PubMed  Google Scholar 

  6. Zhang X, Luo J, Wan K, Plessers D, Sels B, Arbiol J, Fransaer J (2019) From rational design of a new bimetallic MOF family with tunable linkers to OER catalysts. J Mater Chem A 7:1616–1628

    Article  CAS  Google Scholar 

  7. Gutov OV, Hevia MG, Escudero-Adán EC, Shafir A (2015) Metal–organic framework (MOF) defects under control: insights into the missing linker sites and their implication in the reactivity of zirconium-based frameworks. Inorg Chem 54:8396–8400

    Article  CAS  PubMed  Google Scholar 

  8. Poloni R, Smit B, Neaton JB (2012) Ligand-assisted enhancement of CO2 capture in metal–organic frameworks. J Am Chem Soc 134:6714–6719

    Article  CAS  PubMed  Google Scholar 

  9. Lu Y, Zhan W, He Y, Wang Y, Kong X, Kuang Q, Xie Z (2014) MOF-templated synthesis of porous Co 3 O 4 concave nanocubes with high specific surface area and their gas sensing properties. ACS Appl Mater Interfaces 6:4186–4195

    Article  CAS  PubMed  Google Scholar 

  10. Wang J, Zhang H, Liu X, Wu Y, Wang J (2018) MOF-derived nanohybrids for electrocatalysis and energy storage: current status and perspectives. Chem Commun 54:5268–5288

    Article  Google Scholar 

  11. Yu D, Shao Q, Song Q, Cui J, Zhang Y, Wu B, Ge L, Wang Y, Zhang Y, Qin Y, Vajtai R, Ajayan PM, Wang H, Xu T, Wu Y, and complex architectures, Nat. Commun. 11 (2020).

  12. Zhang S, Xu S, Li X, Ma R, Cheng G, Xue Q, Wag H (2020) Double-signal mode based on metal–organic framework coupled cascaded nucleic acid circuits for accurate and sensitive detection of serum circulating miRNAs. Chem Commun 56:4288–4291

    Article  CAS  Google Scholar 

  13. Sheikh BN, Guhathakurta S, Tsang TH, Schwabenland M, Renschler G, Herquel B, Bhardwaj V, Holz H, Stehle T, Bondareva O, Aizarani N, Mossad O, Kretz O, Reichardt W, Chatterjee A, Braun LJ, Thevenon J, Sartelet H, Blank T, Grün D, Von Elverfeldt D, Huber TB, Vestweber D, Avilov S, Prinz M, Buescher JM, Akhtar A (2020) Neural metabolic imbalance induced by MOF dysfunction triggers pericyte activation and breakdown of vasculature. Nat Cell Biol 22:828–841

    Article  CAS  PubMed  Google Scholar 

  14. Saleem S, Sajid MS, Hussain D, Fatima B, Jabeen F, Najam-ul-haq M, Saeed A (2020) Highly porous terpolymer-ZIF8 @ BA MOF composite for identification of mono- and multi-glycosylated peptides / proteins using MS-based bottom-up approach, Microchimica Acta 187

  15. Hu X, Wu Y, Deng C (2020) Recognition of urinary N-linked glycopeptides in kidney cancer patients by hydrophilic carbohydrate functionalized magnetic metal organic framework combined with LC-MS/MS. Microchimica Acta 187

  16. Yu K, Wei T, Li Z, Li J, Wang Z, Dai Z (2020) Construction of molecular sensing and logic systems based on site-occupying effect-modulated MOF–DNA interaction. J Am Chem Soc 142:21267–21271

    Article  CAS  PubMed  Google Scholar 

  17. Lin X, Lian X, Luo B, Huang X (2020) Short communication A highly sensitive and stable electrochemical HBV DNA biosensor based on, Inorg. Chem. Commun. 119:108095.

  18. Hong F, Wang Q, Wang W, Chen X, Cao Y, Dong Y, Gan N (2020) Background signal-free and highly sensitive electrochemical aptasensor for rapid detecting tumor markers with Pb-MOF functionalized dendritic DNA probes, J Electroanal Chem 861:113956.

  19. Hedges JB, Ryan KS (2020) Biosynthetic pathways to nonproteinogenic α-amino acids. Chem Rev 120:161–3209

    Article  Google Scholar 

  20. Xue Y, Cao C, Zheng Y (2018) Enzymatic asymmetric synthesis of chiral amino acids. Chem Soc Rev 47:1516–1561

    Article  CAS  PubMed  Google Scholar 

  21. Massey KA, Blakeslee CH, Pitkow HS (1998) A review of physiological and metabolic effects of essential amino acids. Amino Acids 14:271–300

    Article  CAS  PubMed  Google Scholar 

  22. Bradley K, Briman M, Star A, Gruner G (2004) Charge transfer from adsorbed proteins. Nano Lett 4:253–325

    Article  CAS  Google Scholar 

  23. Kostarelos K (2010) Carbon nanotubes: fibrillar pharmacology. Nat Mater 9:793–795

    Article  CAS  PubMed  Google Scholar 

  24. Bianco A, Kostarelos K, Prato M (2005) Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 9:674–679

    Article  CAS  PubMed  Google Scholar 

  25. Costa D, Garrain P-A, Baaden M (2012) Understanding small biomolecule-biomaterial interactions: a review of fundamental theoretical and experimental approaches for biomolecule interactions with inorganic surfaces. J Biomed Mater Res, Part A 101A(4):1210–1222

    Article  Google Scholar 

  26. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868

    Article  CAS  PubMed  Google Scholar 

  27. Troullier N, Martins JL (1991) Efficient pseudopotentials for plane-wave calculations. Phys Rev B 43(3):1993–2006

    Article  CAS  Google Scholar 

  28. Troullier N, Martins J (1990) A straightforward method for generating soft transferable pseudopotentials. Solid State Commun 74(7):613–616

    Article  Google Scholar 

  29. Rezvani M, Darvish Ganji M, Faghihnasiri M (2013) Encapsulation of lamivudine into single walled carbon nanotubes: a vdW-DF study. Physica E: Low-Dimensional Systems and Nanostructures, 52:27–33.

  30. Ganji MD, Nashtahosseini M, Yeganegi S, Rezvani M (2013) First-principles vdW-DF investigation on the interaction between the oxazepam molecule and C60 fullerene. J Mol Model 19(4):1929–1936

    Article  CAS  PubMed  Google Scholar 

  31. Ganji MD, Jameh-Bozorgi S, Rezvani M (2016) A comparative study of structural and electronic properties of formaldehyde molecule on monolayer honeycomb structures based on vdW-DF prospective. Appl Surf Sci 384:175–181

    Article  CAS  Google Scholar 

  32. Rezvani M, Darvish Ganji M, & Jameh-Bozorghi S (2016) Structural and electronic properties of metalloporphyrin (MP, M = Fe, Co and Zn) adsorbed on single walled BNNT and SiCNT. Applied Surface Science, 360:69–76.

  33. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27(15):1787–1799

    Article  CAS  PubMed  Google Scholar 

  34. Ordejón P, Artacho E, Soler JM (1996) Self-consistent order-N density-functional calculations for very large systems. Phys Rev B 53(16):R10441–R10444

    Article  Google Scholar 

  35. Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P, Sánchez-Portal D (2002) The SIESTA method for ab initio order-N materials simulation. J Phys: Condens Matter 14(11):2745–2779

    CAS  Google Scholar 

  36. Feynman RP (1939) Forces in molecules Physical Review 56(4):340–343

    CAS  Google Scholar 

  37. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Molecular Physics, 19(4):553–566.

  38. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford Univ. Press, Oxford

    Google Scholar 

  39. P. Popelier (Pearson Education, Essex, 2000).

  40. Cortesguzman F, Bader R (2005) Complementarity of QTAIM and MO theory in the study of bonding in donor-acceptor complexes. Coord Chem Rev 249(5–6):633–662

    Article  CAS  Google Scholar 

  41. F. Neese. J.WIREs Comput Mol Sci., 2 (2012) 73–78.

  42. Baerends E, Ellis D (1973) P Ros 2:41–51

    CAS  Google Scholar 

  43. Dunlap BI, Connolly J, Sabin J (1979) J Chem Phys 71:3396–3402

    Article  CAS  Google Scholar 

  44. Van Alsenoy C (1988) J Comput Chem 9:620–626

    Article  Google Scholar 

  45. Kendall RA, Fruchtl HA (1997) Theor Chem Acc 97:158–163

    Article  CAS  Google Scholar 

  46. Eichkorn K, Weigend F, Treutler O, Ahlrichs R (1997) Theor Chem Acc 97:119–124

    Article  CAS  Google Scholar 

  47. Lu T, Chen F (2011) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592

    Article  PubMed  Google Scholar 

  48. Mulliken RS (1955) Electronic population analysis on LCAO–MO molecular wave functions. I The Journal of Chemical Physics 23(10):1833–1840

    Article  CAS  Google Scholar 

  49. F. M. Bickelhaupt, N. J. R. van Eikema Hommes, C. Fonseca Guerra, E. J. Baerends. The carbon−lithium electron pair bond in (CH3Li)n (n= 1, 2, 4). Organometallics, 15(13) (1996) 2923–2931.

  50. C. Fonseca Guerra, J.-W. Handgraaf, E. J. Baerends, F. M. Bickelhaupt. Voronoi deformation density (VDD) charges: assessment of the Mulliken, Bader, Hirshfeld, Weinhold, and VDD methods for charge analysis. Journal of Computational Chemistry, 25(2) (2003) 189–210.

  51. Hirshfeld FL (1977) Bonded-atom fragments for describing molecular charge densities. Theoret Chim Acta 44(2):129–138

    Article  CAS  Google Scholar 

  52. Hubner O, Gloss A, Fichtner M, Klopper W (2004) On the interaction of dihydrogen with aromatic systemS. J Phys Chem A 108:3019–3023

    Article  Google Scholar 

  53. T. Sagara, J. Klassen, J. Ortony, E. Ganz, Binding energies of hydrogen molecules to isoreticular metal-organic framework materials. J. Chem. Phys., 123 (2005) 014701.

  54. Mavrandonakis A, Tylianakis E, Stubos AK, Froudakis GE (2008) Why Li doping in MOFs enhances H2 storage capacity? A multi-scale theoretical study. J Phys Chem C 112:7290–7294

    Article  CAS  Google Scholar 

  55. Klontzas E, Mavrandonakis A, Froudakis GE, Carissan Y, Klopper W (2007) Molecular hydrogen interaction with IRMOF-1: a multiscale theoretical study. J Phys Chem C 111:13635–13640

    Article  CAS  Google Scholar 

  56. Koukaras EN, Zdetsis AD, Froudakis GE (2011) Theoretical study of amino acid interaction with metal organic frameworks. J Phys Chem Lett 2:272–275

    Article  CAS  Google Scholar 

  57. Koukaras EN, Montagnon T, Trikalitis P, Bikiaris D, Zdetsis AD, Froudakis GE (2014) Toward efficient drug delivery through suitably prepared metal−organic frameworks: a first-principles study. J Phys Chem C 118:8885–8890

    Article  CAS  Google Scholar 

  58. M. Eddaoudi, Jaheon Kim, N. Rosi, D. Vodak, J. Wachter, M. O’Keeffe, O. M. Yaghi, Science, 2002, 295, 469, https://doi.org/10.1126/science.1067208

  59. N.L. Rosi. J. Eckert, M. Eddaoudi, David T. Vodak, J. Kim, M. O’Keefe, O. Yaghi, Science., 300 (2003) 1127–1129.

  60. Zhang S-Y, Li D, Guo D, Zhang H, Shi W, Cheng P, Wojtas L, Zaworotko MJ (2015) Synthesis of a chiral crystal form of MOF-5, CMOF-5, by chiral induction. J Am Chem Soc 137:15406–15409

    Article  CAS  PubMed  Google Scholar 

  61. Tavassoli Larijani H, Darvish Ganji M, Jahanshahi M (2015) Trends of amino acid adsorption onto graphene and graphene oxide surfaces: a dispersion corrected DFT study. RSC Adv 5(113):92843–92857

    Article  CAS  Google Scholar 

  62. Darvish Ganji, M., Tavassoli Larijani, H., Alamol-hoda, R., & Mehdizadeh, M. (2018). First-principles and molecular dynamics simulation studies of functionalization of Au32 golden fullerene with amino acids. Scientific Reports, 8(1).

  63. Kai Stückenschneider, Juliane Merz, Felix Hanke, Piotr Rozyczko, Victor Milman, and Gerhard Schembecker, Amino-acid adsorption in MFI-type zeolites enabled by the pH dependent ability to displace water, J. Phys. Chem. C 2013, 117, 18927−18935.

  64. R. Zacharia, H. Ulbricht, & T. Hertel. Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons. Physical Review B 69 (2004) 155406.

  65. Grabowski SJ (2012) J Phys Chem A 116:1838

    Article  CAS  PubMed  Google Scholar 

  66. Parthasarthi R, Subramanian V, Sathyamurthy N (2005) J Phys Chem A 109:843

    Article  Google Scholar 

  67. PavanMS PR, Nagarajan K, Row TNG (2014) Cryst. Growth Des 14:5477

    Google Scholar 

  68. Hirano Y, Takeda K, Miki K (2016) Nature 534:281

    Article  CAS  PubMed  Google Scholar 

  69. Parthasarathi R, Subramanian V (2005) Struct Chem 16:243

    Article  CAS  Google Scholar 

  70. Kumar RM, Elango M, Subramanian V (2010) J Phys Chem A 114:4313

    Article  CAS  PubMed  Google Scholar 

  71. Babu K, Ganesh V, Gadre SR, Ghermani NE (2004) Theor Chem Acc 111:255

    Article  CAS  Google Scholar 

  72. Ziolkowski M, Grabowski SJ, Leszczynski J (2006) J Phys Chem A 110:6514

    Article  CAS  PubMed  Google Scholar 

  73. Anbu V et al (2019) Explosives properties of high energetic trinitrophenyl nitramide molecules: a DFT and AIM analysis. Arab J Chem 12(5):621–632

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MDG and FA planned the project, AB and MDG build the models and set up the software, HRG and MDG analyzed the results, AB, FA, and MFG participated in the manuscript preparation.

Corresponding authors

Correspondence to Fatemeh Ardestani or Masoud Darvish Ganji.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Code availability

Yes.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakhshandeh, A., Ardestani, F., Ghorbani, H.R. et al. Structural and molecular properties of complexes of biomolecules and metal–organic frameworks: dispersion-corrected DFT treatment. J Mol Model 28, 32 (2022). https://doi.org/10.1007/s00894-021-04947-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04947-2

Keywords

Navigation