Skip to main content
Log in

Effects of geometrical parameters and functionalization percentage on the mechanical properties of oxygenated single-walled carbon nanotubes

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The mechanical properties of oxygen-functionalized single-walled carbon nanotubes (CNTs) are studied herein by molecular dynamics (MD) simulations. An analysis of the random distribution of oxygen atoms on CNTs of various functionalization percentages is presented in this study. The influences of the nanotube length, diameter, and the percentage of functionalization on longitudinal Young’s modulus, failure stress, strain, and toughness are investigated. The results show that for both zigzag and armchair chiralities, Young’s modulus decreases by increasing the nanotube diameter and length-to-diameter ratio. Also, the values of all studied properties including Young’s modulus, stress, strain, and toughness are reduced by increasing the functionalization percentage until the nanotube reaches failure. Moreover, the reason for the alteration of the mechanical properties of nanotubes and the behavior of the stress-strain diagram are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations.

Code availability

The code required to reproduce these findings cannot be shared at this time due to technical or time limitations.

References

  1. Ajayan PM, Schadler LS, Braun PV (2006) Nanocomposite science and technology: John Wiley & Sons

  2. Narkis M, Chen E, Pipes R (1988) Review of methods for characterization of interfacial fiber-matrix interactions. Polym Compos 9(4):245–251

    Article  CAS  Google Scholar 

  3. Wong M et al (2003) Physical interactions at carbon nanotube-polymer interface. Polymer 44(25):7757–7764

    Article  CAS  Google Scholar 

  4. Ebbesen TW (1994) Carbon nanotubes. Annu Rev Mater Sci 24(1):235–264

    Article  CAS  Google Scholar 

  5. Maiti A et al (1995) Theory of carbon nanotube growth. Phys Rev B 52(20):14850

    Article  CAS  Google Scholar 

  6. Scalia G et al (2008) Spontaneous macroscopic carbon nanotube alignment via colloidal suspension in hexagonal columnar lyotropic liquid crystals. Soft Matter 4(3):570–576

    Article  CAS  PubMed  Google Scholar 

  7. Woods L, Bădescu Ş, Reinecke T (2007) Adsorption of simple benzene derivatives on carbon nanotubes. Physical Review B 75(15):155415

    Article  Google Scholar 

  8. Tan H et al (2007) The effect of van der Waals-based interface cohesive law on carbon nanotube-reinforced composite materials. Compos Sci Technol 67(14):2941–2946

    Article  CAS  Google Scholar 

  9. Ansari R, Rouhi S, Eghbalian M (2017) On the elastic properties of curved carbon nanotubes/polymer nanocomposites: a modified rule of mixture. J Reinf Plast Compos 36(14):991–1008

    Article  CAS  Google Scholar 

  10. Rahimpour A et al (2012) Novel functionalized carbon nanotubes for improving the surface properties and performance of polyethersulfone (PES) membrane. Desalination 286:99–107

    Article  CAS  Google Scholar 

  11. Ma P-C et al (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos A Appl Sci Manuf 41(10):1345–1367

    Article  Google Scholar 

  12. Fisher A, et al (2001) Method of making functionalized nanotubes. Google Patents

  13. Ebrahimi S, Rafii-Tabar H (2015) Influence of hydrogen functionalization on mechanical properties of graphene and CNT reinforced in chitosan biological polymer: Multi-scale computational modelling. Comput Mater Sci 101:189–193

    Article  CAS  Google Scholar 

  14. Pei Q, Zhang Y, Shenoy V (2010) A molecular dynamics study of the mechanical properties of hydrogen functionalized graphene. Carbon 48(3):898–904

    Article  CAS  Google Scholar 

  15. Yang Q-S et al (2014) Modeling the mechanical properties of functionalized carbon nanotubes and their composites: design at the atomic level. Adv Condens Matter Phys 2014:8

  16. Boukhvalov D, Katsnelson M (2009) Chemical functionalization of graphene. J Phys Condens Matter 21(34):344205

    Article  CAS  PubMed  Google Scholar 

  17. Chen C et al (2009) Oxygen functionalization of multiwall carbon nanotubes by microwave-excited surface-wave plasma treatment. J Phys Chem C 113(18):7659–7665

    Article  CAS  Google Scholar 

  18. Kim JH et al (2016) Effect of surface oxygen functionalization of carbon support on the activity and durability of Pt/C catalysts for the oxygen reduction reaction. Carbon 101:449–457

    Article  CAS  Google Scholar 

  19. Xia W et al (2009) A highly efficient gas-phase route for the oxygen functionalization of carbon nanotubes based on nitric acid vapor. Carbon 47(3):919–922

    Article  CAS  Google Scholar 

  20. Ansari R, Ajori S, Rouhi S (2015) Structural and elastic properties and stability characteristics of oxygenated carbon nanotubes under physical adsorption of polymers. Appl Surf Sci 332:640–647

    Article  CAS  Google Scholar 

  21. Yao Z et al (2001) Mechanical properties of carbon nanotube by molecular dynamics simulation. Comput Mater Sci 22(3–4):180–184

    Article  CAS  Google Scholar 

  22. Tsai J-L, Tu J-F (2010) Characterizing mechanical properties of graphite using molecular dynamics simulation. Mater Des 31(1):194–199

    Article  CAS  Google Scholar 

  23. Zang J-L et al (2009) A comparative study of Young’s modulus of single-walled carbon nanotube by CPMD, MD and first principle simulations. Comput Mater Sci 46(3):621–625

    Article  CAS  Google Scholar 

  24. Neyts EC, Van Duin AC, Bogaerts A (2011) Changing chirality during single-walled carbon nanotube growth: a reactive molecular dynamics/Monte Carlo study. J Am Chem Soc 133(43):17225–17231

    Article  CAS  PubMed  Google Scholar 

  25. Namilae S, Chandra N, Shet C (2004) Mechanical behavior of functionalized nanotubes. Chem Phys Lett 387(4–6):247–252

    Article  CAS  Google Scholar 

  26. Zhang W et al (2019) Improving interfacial and mechanical properties of carbon nanotube-sized carbon fiber/epoxy composites. Carbon 145:629–639

    Article  CAS  Google Scholar 

  27. Kwiatkowska M et al (2020) Different approaches to oxygen functionalization of multi-walled carbon nanotubes and their effect on mechanical and thermal properties of polyamide 12 based composites. Polymers 12(2):308

    Article  CAS  PubMed Central  Google Scholar 

  28. Polanski J (2009) 4.14 Chemoinformatics. Elsevier B.V

  29. Krokhotin A, Dokholyan NV (2015) Computational methods toward accurate RNA structure prediction using coarse-grained and all-atom models. Methods Enzymol 553:65–89

    Article  CAS  PubMed  Google Scholar 

  30. Brenner DW (1988) Tersoff-type potentials for carbon, hydrogen and oxygen. MRS Proceedings 141:59–64

    Article  Google Scholar 

  31. Munetoh S et al (2007) Interatomic potential for Si–O systems using Tersoff parameterization. Comput Mater Sci 39(2):334–339

    Article  CAS  Google Scholar 

  32. Ishimaru M, Munetoh S, Motooka T (1997) Generation of amorphous silicon structures by rapid quenching: A molecular-dynamics study. Phys Rev B 56(23):15133

    Article  CAS  Google Scholar 

  33. Motooka T et al (2000) Molecular-dynamics simulations of solid-phase epitaxy of Si: growth mechanisms. Phys Rev B 61(12):8537

    Article  CAS  Google Scholar 

  34. Munetoh S et al (2001) Molecular dynamics simulations of solid-phase epitaxy of Si: defect formation processes. Phys Rev B 64(19):193314

    Article  Google Scholar 

  35. Munetoh S et al (2001) Epitaxial growth of a low-density framework form of crystalline silicon: a molecular-dynamics study. Phys Rev Lett 86(21):4879

    Article  CAS  PubMed  Google Scholar 

  36. Albe K, Nordlund K, Averback RS (2002) Modeling the metal-semiconductor interaction: analytical bond-order potential for platinum-carbon. Phys Rev B 65(19):195124

    Article  Google Scholar 

  37. Pauling L (1929) The principles determining the structure of complex ionic crystals. J Am Chem Soc 51(4):1010–1026

    Article  CAS  Google Scholar 

  38. Pauling L (1940) The nature of the chemical bond: and the structure of molecules and crystals; an introduction to modern structural chemistry, 2nd edn. Oxford University Press, London, p 664  

  39. Kumagai T et al (2007) Development of bond-order potentials that can reproduce the elastic constants and melting point of silicon for classical molecular dynamics simulation. Comput Mater Sci 39(2):457–464

    Article  CAS  Google Scholar 

  40. Broughton JQ et al (1997) Direct atomistic simulation of quartz crystal oscillators: bulk properties and nanoscale devices. Phys Rev B 56(2):611

    Article  CAS  Google Scholar 

  41. Nakano A, Kalia RK, Vashishta P (1994) First sharp diffraction peak and intermediate-range order in amorphous silica: finite-size effects in molecular dynamics simulations. J Non-Cryst Solids 171(2):157–163

    Article  CAS  Google Scholar 

  42. Vashishta P et al (1990) Interaction potential for SiO 2: a molecular-dynamics study of structural correlations. Phys Rev B 41(17):12197

    Article  CAS  Google Scholar 

  43. Tersoff J (1994) Chemical order in amorphous silicon carbide. Phys Rev B 49(23):16349

    Article  CAS  Google Scholar 

  44. Aasi A, Aghaei S, Panchapakesan B (2020) A density functional theory study on the interaction of toluene with transition metal decorated carbon nanotubes: a promising platform for early detection of lung cancer from human breath. Nanotechnology 31(41):415707

    Article  CAS  PubMed  Google Scholar 

  45. Demaison J, Császár AG (2012) Equilibrium CO bond lengths. J Mol Struct 1023:7–14

    Article  CAS  Google Scholar 

  46. Mayo SL, Olafson BD, Goddard WA (1990) DREIDING: a generic force field for molecular simulations. J Phys Chem 94(26):8897–8909

    Article  CAS  Google Scholar 

  47. Wang CM et al (2014) Molecular dynamics simulation and continuum shell model for buckling analysis of carbon nanotubes. In Modeling of Carbon Nanotubes, Graphene and their Composites. Springer Ser Mater Sci 188:239–273

    Article  CAS  Google Scholar 

  48. Askeland DR et al (1984) The science and engineering of materials. PWS-KENT Publishing Company

  49. Larson B (2011) Ndt education resource center. The Collaboration for NDT Education, Iowa State University, USA, 2001

  50. Soboyejo W (2002) Mechanical properties of engineered materials. 1st edn. CRC press, New York

  51. Zhang Y, Huang H (2008) Stability of single-wall silicon carbide nanotubes–molecular dynamics simulations. Comput Mater Sci 43(4):664–669

  52. DeGarmo EP et al (1997) Materials and process in manufacturing. Prentice Hall: Upper Saddle River

  53. Van Melick H, Govaert L, Meijer H (2003) On the origin of strain hardening in glassy polymers. Polymer 44(8):2493–2502

    Article  Google Scholar 

  54. Natsuki T, Endo M (2004) Stress simulation of carbon nanotubes in tension and compression. Carbon 42(11):2147–2151

    Article  CAS  Google Scholar 

  55. McNaught AD, Wilkinson A (1997) Compendium of chemical terminology. Vol. 1669: Blackwell Science Oxford

  56. Eghbalian M, Ansari R, Rouhi S (2021) Mechanical properties of oxygen-functionalized silicon carbide nanotubes: a molecular dynamics study. Physica B: Condensed Matter 610:412939

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

ME: conceptualization, methodology, software, RA: supervision, conceptualization, writing—review and editing, SR: methodology, software.

Corresponding author

Correspondence to Reza Ansari.

Ethics declarations

Ethics approval

N/A

Consent to participate

N/A

Consent for publication

N/A

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eghbalian, M., Ansari, R. & Rouhi, S. Effects of geometrical parameters and functionalization percentage on the mechanical properties of oxygenated single-walled carbon nanotubes. J Mol Model 27, 351 (2021). https://doi.org/10.1007/s00894-021-04946-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04946-3

Keywords

Navigation